An Interactive Specializer Based on
Partial Evaluation for a Java Subset

V1. A. Adamovich <i.a.adamovich@gmail.com>
2 And. V. Klimov <klimov@keldysh.ru>
! Ailamazyan Program Systems Institute of Russian Academy of Sciences,
4a Peter the First str., Veskovo, Yaroslavl region, 152021, Russia
2 Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,
4 Miusskaya sq., Moscow, 125047, Russia

Abstract. Specialization is a program optimization approach that implies the use of a priori
information about values of some variables. Specialization methods are being developed since
1970s (mixed computations, partial evaluation, supercompilation). However, it is surprising,
that even after three decades, these promising methods have not been put into the wide
programming practice. One may wonder: What is the reason? Our hypothesis is that the task
of specialization requires much greater human involvement into the specialization process, the
analysis of its results and conducting computer experiments than in the case of common
program optimization in compilers. Hence, specializers should be embedded into integrated
development environments (IDE) familiar to programmers and appropriate interactive tools
should be developed. In this paper we provide a work-in-progress report on results of
development of an interactive specializer based on partial evaluation for a subset of the Java
programming language. The specializer has been implemented within the popular Eclipse IDE.
Scenarios of the human-machine dialogue with the specializer and interactive tools to compose
the specialization task and to control the process of specialization are under development. An
example of application of the current version of the specializer is shown. The residual program
runs several times faster than the source one.

Keywords: program analysis, program transformation, interactive program specialization,
partial evaluation, object-oriented language, integrated development environment.

DOI: 10.15514/ISPRAS-2018-30(4)-2

For citation: Adamovich [.A., Klimov And.V. An Interactive Specializer Based on Partial
Evaluation for a Java Subset. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 29-44.
DOI: 10.15514/ISPRAS-2018-30(4)-2

! Supported by RFBR research project No. 18-37-00454 (contribution: development of
interactive methods of partial evaluation, design of the architecture and implementation of the
specializer, analysis of related works).

2 Supported by RFBR research project No. 16-01-00813 (contribution: problem statement,
design of methods based on the existing approaches, supervision, analysis of related works).

29

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

1. Introduction

The method of program specialization known as partial evaluation was invented
more than 30 years ago along with the achievement of the famous result [1], [2] of
evaluation of the First, Second and Third Futamura projections [3]—[5] for a tiny List
subset. The first round of research was completed in early 1990s when the main
textbook on partial evaluation had been published [2]. A lot of programming
problems were found to be solved by program specialization (the most known being
the generation of a compiler from an interpreter by the Second Futamura Projection)
and the emergence of a new class of program development tools based on
specialization were expected. Some other program specialization techniques, e.g.,
supercompilation [6], [7], has been developed in parallel as well. However, it is
surprising that even after three decades these promising methods have not been put
into the wide programming practice. One may wonder: What is the reason?

Our hypothesis is that the main expectation that governed the development of
specializers was wrong. The developers of these methods hoped that specializers
could work in fully automatic mode and they just needed to invent some finitely many
features and improvements that solve the problem, after which “the great goal” would
be achieved and happy programmers started using the new tools. They expected that
specializers could work in the similar “black-box mode” as optimizing compilers.
However this did not happen. The time and space complexity of the program
transformations that were necessary for specialization, turned out to be much higher
than the complexity of program optimizations that can be used as “black boxes” with
short and predictable run time and consumed memory.

We argue that automatic methods of program optimization have reached certain
inherent limits. In order to develop and use more powerful tools, we must give up the
expectations that the program analysis and transformation systems will operate in
automatic mode without human intervention. Program specializers possess too many
degrees of freedom and choice, which cannot be resolved by the algorithms of their
kind and, therefore, should use human help.

Based on this observation, we put forward the goal of construction of an interactive
specializer embedded in a habitual integrated development environment (IDE) such
as Eclipse [8]. Eclipse provides a rich open-source toolkit referred to as Java
development tools (JDT) [9], which allows a developer to deal only with essential
tasks of analysis, visualization and transformation of Java code. Adequate human-
machine dialogue tools to control the specializer and deal with the results of
specialization are to be developed. We would like to emphasize that there is strict
separation of concerns between the machine and the human: the specializer guaranties
the functional equivalence of program transformation and the user is responsible for
the control of the specializer in such a way that it produces the code that satisfied
user’s goals and needs (which the machine does not know).

30

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

public class AckermannExample {
public final static long A (long X, long y) {
if (X == @) return y + 1;
else if (y == @) return A(Xx - 1, 1);
else return A(x - 1, A(X, v - 1));

}

@Specialize

public static long test(long y) {
return A(3, y);

X

Fig.1. Source code of Ackermann function

We think that partial evaluation is better suited than other specialization methods (like
supercompilation) for human-machine dialogue organized in such a way that the user
comprehends what is happing in the specializer, receives valuable and interesting
information about his code, is capable of adjusting the source code to be better
specialized and controls the specializer. The reason is that the method of partial
evaluation consists of two stages:

o binding-time analysis (BTA) of source code that selects the parts of the
code that are to be evaluated at specialization time, and

o residual program generation (RPG) that follows the information supplied
by BTA, performs specialization proper and produces the resulting code
(referred to as residual).

A pleasant feature of BTA is that its result (called BT annotation) may be naturally
shown on the source code by highlighting and due to such visualization the residual
code is intuitively predictable. We hope that this will allow for easy adoption of
specializers as new programming tools by rank-and-file programmers.
Terminological remark. In the theory of partial evaluation the parts of source code to
be evaluated during specialization are called static. The other source code that is
transferred to the residual program (residualized) is referred to as dynamic. The term
static conflicts with the static modifier in Java and the term dynamic may be
confused with the run-time notions. That is why we avoid using these words in the
partial evaluation sense and use abbreviations S and D instead, e.g.,
S-annotation, D-annotation, S-code, D-code, S-part and D-part of a program.

The contributions of this paper are as follows.

o We show the first results of development of the Java specializer, where
partially evaluated code is restricted to operations on primitive types.

o We demonstrate the work of the specializer by an example of specialization
of the Ackermann function with respect to the first argument.

e We discuss some of the details of implementation in Eclipse and the
methods and features to be implemented in future.

31

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

public class AckermannExample {
public long test(long y) {
return A_3(y);
}

public final long A_3(long y) {
if (y == @) return A_2(1);
else return A_2(A_3(y - 1));
}

public final long A_2(long y) {
if (y == @) return A_1(1);
else return A_1(A_2(y - 1));
}

public final long A_1(long y) {
if (y == ©) return A_0(1);
else return A_G(A_1(y - 1));
}

public final long A_©(long y) {
return y + 1;
}

Fig. 2. Residual code of Ackermann function

The outline of the paper is as follows. In Section 2 we present the basics of partial
evaluation for Java by an example of specialization of the Ackermann function. In
Section 3 a bird-eye view of the implementation of the specializer in the Eclipse IDE
is presented. Section 4 contains a survey of related works in comparison with our
specializer. In Section 5 we conclude.

2. Java Specialization by Example

Fig. 1 and 2 contain screenshots of the source and residual code of the Ackermann
function made from the running specializer in Eclipse IDE.

The method A implements the Ackermann function and the method test invokes it
with the first constant argument 3. The Java annotation @Specialize at the
method test specifies that it should be specialized, i.e., its body is to be replaced
with the residual code and the specialized versions of the methods that it invokes are
to be generated and added to the program. The names of the methods A and test in
their headers are marked in orange in order to show that they are involved in BTA.
The bodies of these methods are analyzed and annotated: green highlighting marks
S-parts of code. (You see gray highlighting in fig. 1 if you read this paper in a
monochrome print).

32

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

2.1. Binding-Time Analysis

The BTA algorithm for variables and operations of primitive types is rather
straightforward. First, all constants are annotated with S. Then recursively: a
subexpression containing only S-parts becomes S; a local variable declaration and an
assignment with S right-hand sides become S; a method parameter that correspond to
S arguments at all points of invocation becomes S; in case of conflict of several
invocations of the same method the conflicting parameter becomes D; a conflict on
several assignments to a local variable turns it to D as well; an i f statement with the
S conditional expression is annotated with S regardless of the annotation of its
branches (this means that i f-e1se will disappear while one of the branches will be
residualized); other control statements are analyzed and annotated similarly. When
the recursion reaches the fixed point, the remaining parts of code are annotated with
D. D-parts are not highlighted in Figure 1.

This mode of operation of BTA, when each code fragment gets univocal annotation
S or D, is referred to as monovariant. The more general mode when several versions
of annotation are allowed is called polyvariant. The current version of BTA is
monovariant. In future we plan to implement polyvariant BTA for classes and
reference types according the theory developed in [10]-[18].

Monovariant BTA on primitive types can be defined formally as abstract
interpretation on a lattice with 3 elements: undefined < S <D.

As an illustration of monovariance, notice that in figure 1 method A is invoked 3 times
in the source code, one of which has both S arguments, another 2 invocations have
the first S argument and the second one is D. The first invocation is processed in the
same way as the other two with the second S argument assigned to the D formal
parameter.

2.2. Residual Program Generation

At the generation stage, partial evaluation starts from the method with the
@Specialize annotation and recursively visits all invoked methods in turn. Notice
that, since all statements and methods with side effects are considered D and hence
are residualized rather than executed at specialization time, the order of specialization
of methods does not matter. For each of the specialized methods, several residual
versions can be produced — one for each combination of values of S arguments. They
got different names of the form (in the current version):
source-name_number. They have only those parameters that correspond to D
parameters in the source code.
The current version of the specializer can loop forever if infinitely many values of S
arguments are generated. The production version of the specializer should contain
special debugging means to gracefully leave such situations. This is our future work.
In Figure 2 there are 4 versions of residual method A corresponding to values 0, 1, 2,
3 of its first argument. Notice that because of monovariance the invocations
33

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

A 2(1), A 1(1),and A 0 (1) have not being evaluated, since the constant 1
correspond to the D parameter of method A.

2.3. Running Source and Residual Programs

We have chosen this example for presentation, since it demonstrates all main features
of the current version of the specializer. We did not expect a significant speed-up as
it seemed that asymptotically the number of method invocations was almost the same
and the invocations were the most expensive operations in this example. Thus we
were very surprised when the speed-up was about 3 times.

The obtained acceleration can be explained by several reasons. First, calculation
showed that the specialized version performs 1.86 times less Java byte code
instructions. Second and more important, it is natural to suppose that the JIT compiler
in JVM performs inlining of those specialized method that are simpler and more
compact than in the source code.

This example illustrates the principle, which we observed many times in experiments
with various specializers: a specializer does not replace the classic optimizing
compilers. Rather, we observe “composition” of optimizations by a specializer and a
low-level optimizing compiler and hence multiplication of speed-ups. Residual code
produced by specializers is more amendable for classic optimizations than code
written by a human being. We may conclude that specialization opens up additional
opportunities for program optimization.

3. Architecture of Specializer

The specializer has been implemented in the Eclipse development environment (IDE)
[8]. The IDE has open source code and provides points and tools to extend it.

The basis for Eclipse extension is the concept of a plug-in. Each plug-in is an archive
JAR file containing a so-called manifest, a set of files describing the dependencies of
the plug-in and the possibility of its extension (extension points). Other plug-ins can
add their functionality to these extension points. For example, one might want to add
his toolbar extensions to an already implemented toolbar plug-in.

A small tool is usually implemented as a one plug-in, while a large one is often
provided as a set of plug-ins. Our specializer is implemented as three Eclipse plug-
ins.

The specializer consists of the following plug-ins:

e aplug-in SpecCore is the core of the specializer, which implements its
main functionality;

e aplug-in SpecMarkers is responsible for text highlighting in the Eclipse
editor in accordance with the annotation produced by the SpecCore plug-in;

e aplug-in SpecMenus implements interactions with various menus
(including context menus) and toolbars to provide a user-friendly interface.

34

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

The SpecCore implements the binding-time analysis (BTA) and the generation of a
residual program. When analyzing the source program the plug-in SpecCore uses the
abstract syntax tree (AST) built by the Eclipse Java development tools (JDT).

JDT is a set of plug-ins that provides us with an easy way to manipulate Java source
code.

The second of the three plug-ins that form the specializer is the SpecMarkers plug-in.
It is responsible for highlighting the source code, which allows the programmer to see
which parts of the program are evaluated at specialization time and which are
residualized. This helps him to understand how to change the code to provide better
specialization.

The last part of the specializer is the SpecMenus plug-in. This plug-in uses the
extension points of other plug-ins to add the necessary elements to some menus. It
adds two new buttons to the main toolbar of Eclipse: Enable/Disable the highlighting
and the “Generate optimized Java files” button. Also this plug-in adds items to the
context menu of the Project Explorer and Package Explorer views.

4. Related Work and Comparison

A lot of works are devoted to partial evaluation for functional languages. The book
[2] summarizes the first wave of development of this method.

Later on, research into partial evaluation for imperative “Algol-like” languages [19],
[20] and C [21] was performed. In early 1990's, the first (to our knowledge)
specializer for C was developed, called C-MIX [21], [22]. Chapter 11 of the book [2]
contains its detailed presentation. C-MIX specializes a program in three stages.

The first stage is the analysis of references. For each reference variable, a set of the
variables that it could refer to is built. If the analysis finds that several reference
variables can refer to the same memory, they are labeled identically. The second stage
is the construction of a binding-time annotation of the source code. References to the
same memory area are annotated identically. In case of conflicts, the annotation is
reduced to D as usual. The third stage is the generation of the residual program.

Specialization of reference types in Java can be similar to elaboration of pointers in
C-MIX. However, Java stricter typing and managed run-time can be leveraged for
deeper specialization. The current version of our specializer annotates all reference
variables D and, therefore, they are left unchanged. Our future work is to add the
binding-time analysis of reference types. Unlike C-MIX, we expect that our
specializer will still work in two stages — without the reference analysis phase.

Further development of ideas of C-MIX led to the creation of a specializer of
programs written in C, called Tempo [23], [24]. This specializer is much like C-MIX.
The next important step was the development of the first specializer for an object-
oriented language — JSpec for Java [25]. JSpec uses the Harissa compiler [26] to
translate the Java program into C. Then the Tempo specializer mentioned above
transforms the program. The obtained C-representation of a specialized Java program
is mapped back into Java using the Assirah translator [25]. Finally, the AspectJ tool

35

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

weaves the specialized program with the source program to get the executable Java
bytecode. The main limitation of JSpec is that it is capable of partially evaluating only
immutable classes and objects, while mutable objects are always residualized. Our
goal is to waive this restriction.

The most advanced (to our knowledge) partial evaluation method for object-oriented
languages like C# and Java has been developed in CILPE [10]-[18], a partial
evaluator for Common Intermediate Language (CIL), the bytecode of the Microsoft
NET Framework. It supports almost all of the basic constructs of object-oriented
languages such as C# and Java. In CILPE, a new concept of a binding-time heap (BT
heap) has been introduced. A BT heap is an abstract description of the state of a run-
time heap, which allows us to separate reference type data into evaluated at
specialization time and residualized ones and to avoid the use of the reference analysis
stage as in C-MIX. As a result of specialization, some of the objects are no longer
created in the residual program, and if necessary, local variables are used instead of
object fields. We will base on the results of this research in our future work to
implement BTA of classes and partial evaluation of objects.

A relatively new specializer of Java programs is Civet [27]. Civet is based on a so-
called Hybrid Partial Evaluation (HPE) approach. Specialization in HPE is performed
in online mode, i.e., in one pass, while the programmer can specify which parts of the
program have S-annotation. On the contrary, in our specializer we choose the offline
approach, i.e., the residual program is built at the stage of generation of the residual
program after the completion of the binding-time analysis,

where information about the S-parts of the program is collected automatically rather
than specified by the user as in Civet!.

PE-KeY [28] is a partial evaluator for Java programs based on the KeY verification
system [29]. PE-Key works in two stages. At the first stage, the program is executed
in a symbolic form with the application of a special set of rules. At the second stage,
aresidual program is synthesized, while the rules are applied in the opposite direction.
The PE-KeY approach is similar to the classical offline specialization that our
specializer uses: a specialized program is produced in two stages. However, in the
first stage of PE-KeY, the program is executed symbolically, while our binding-time
analysis performs an abstract interpretation of the program. In addition, due to
limitations of the KeY verification system, PE-KeY does not support floating-point
arithmetic, while our specializer supports.

JSpec, Civet, PE-Key deal with objects at specialization time, while the current
version of our specializer annotates classes and variables of reference types with D
and thus residualizes them unchanged. The extension of our specializer to partial
evaluation of classes and objects is our future work.

! For discussion of the features of and differences between online and offline partial evaluation
see [2, Chapter 7].
36

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

The specializers considered above interact with the user through the command line,
so it's extremely difficult to use them. In order for the specialization to be widely
used, it is required to develop the methods of interaction with the user and to embed
the specializer into an integrated development environment convenient for the
programmer, what we are implementing in our specializer. This is a crucial difference.
We know about just one work on partial evaluation carried out in a practical setting —
the GraalVM toolkit in Oracle Labs [30], [31]. The toolkit is designed for defining
domain-specific languages by interpreters and, nevertheless, achieving high-
performance by using a specializer. The first Futamura projection provides an
opportunity for such acceleration (see [3], [4] and [2, Chapter 1.5.1]): given a program
and an interpreter that executes the program, Graal VM specializes the interpreter with
respect to a part of the given program and produces the machine code of this part. The
resulting code is executed much faster than the original one in the interpreter. The
main goal of GraalVM is to provide a technology similar to just-in-time (JIT)
compilation for the developer of a programming language without the need to
implement the complex machinery of JIT. The interpreter specialization in GraalVM
is not automatic and uses prompts by the interpreter developer. This case of
implementation of partial evaluation confirms that practical application of
specialization requires guidance from the programmer. We conduct our research in
the same direction: methods and tools are being developed to provide the programmer
with information about program behavior under specialization and levers to control
the partial evaluation processes.

5. Conclusion

In this paper we put forward the task of development of an interactive specializer.
We argue that the current stage of program specialization methods has reached certain
limits because the previously implemented specializers do not imply the participation
of the user in the process of specialization. Our specializer uses the offline partial
evaluation approach, where the program transformation if performed in two stages —
binding-time analysis (BTA) and residual program generation (RPG). We briefly
described the architecture of our interactive specializer in the Eclipse development
environment.

We illustrated the work of the specializer with the famous example of the Ackermann
function and the result of its specialization with respect to its first argument. The
specialized program runs several times (about three) faster than the original one.

We see the following directions for further development of the specializer:

e to develop and implement binding-time analysis and residual program
generation for classes and objects;

e to implement interactive tools for composing a specialization task and
controlling the process of binding-time analysis and residual program
generation;

e to implement tools to visualize the correspondence between source and
37

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

residual code;

e to demonstrate that a well-developed specializer can convert
well-structured high-level human-oriented code, which can not be
automatically parallelized, into code that can be parallelized by existing
methods and tools;

e to prepare demo programs that benefit from specialization, for example,
building a compiler from an interpreter;

e to generalize the binding-time analysis from monovariant to polyvariant;

¢ to develop an interactive tracer (similar to run-time debuggers) that allows
the user to observe the analysis and generation processes in order to
improve the behavior of his code under specialization.

Availability. The current version of our specializer is available at
ftp://ftp.botik.ru/rented/iaadamovich/Specializer/.

Acknowledgment

We are grateful to our friends and colleagues Yuri Klimov, Arkady Klimov, Sergei
Romanenko, Sergei Abramov for valuable advices on specialization methods in
general and partial evaluation in particular and constructive feedback on the design
of our specializer system.

References

[1]. Jones N.D., Sestoft P. and Sendergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124-140

[2]. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993, 415 p. Available at:
http://www.itu.dk/~sestoft/pebook/pebook.html, accessed 20.06.2018

[3]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45-50

[4]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381—
391. Updated and revised version of [3]. Available at:
http://doi.org/10.1023/A:1010095604496, accessed 20.06.2018

[S]. Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. Available at:
http://fi.ftmr.info/PE-Museum/EL1.PDF, accessed 20.06.2018

[6]. Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292-325

[7]. Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International Andrei Ershov Memorial Conference, Akademgorodok,

38

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

[11].

[12].

[14].

[15].

Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in Computer Science,
D. Bjerner, M. Broy, and I.V. Pottosin, (Eds.), vol. 1181. Springer, 1996, pp. 227-248

. Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Available at:

https://www.eclipse.org, accessed 20.06.2018

. Eclipse Foundation. Eclipse Java development tools (JDT). Available at:

https://www.eclipse.org/jdt, accessed 20.06.2018

. Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based

language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78-84. Available at: http://meta2008.pereslavl.ru/accepted-
papers/paper-info-6.html, accessed 20.06.2018

Klimov Yu.A. [Program specialization for object-oriented languages by partial
evaluation: approaches and problems]. Preprinty’ IPM im. M.V. Keldy'sha [Keldysh
Institute Preprints], no. 12, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-12, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: examples of object-oriented program specialization].
Preprinty” IPM im. M.V. Keldy'sha [Keldysh Institute Preprints], no. 30, 2008 (in
Russian). Available at: http:/library.keldysh.ru/preprint.asp?id=2008-30, accessed
20.06.2018

. Klimov Yu.A. [SOOL: an object-oriented stacked-based language for specification and

implementation of program specialization techniques]. Preprinty’ IPM im. M.V.
Keldy'sha [Keldysh Institute Preprints], no. 44, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-44, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: binding time analysis]. Preprinty’ IPM im. M.V.
Keldy'sha [Keldysh Institute Preprints], no. 7, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-07, accessed 20.06.2018

Klimov Yu.A. [Specializer CILPE: residual program generation]. Preprinty’ IPM im.
M.V. Keldy'sha [Keldysh Institute Preprints], no. 8, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-08, accessed 20.06.2018

. Klimov Yu.A. [Specializer CILPE: correctness proof]. Preprinty" IPM im. M.V.

Keldy'sha [Keldysh Institute Preprints], no. 33, 2009, (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-33, accssed 20.06.2018

. Klimov Yu.A. [Specialization of programs in object-oriented languages by partial

evaluation]. Ph.D. dissertation, Keldysh Institute of Applied Mathematics of RAS,
Moscow, Russia, Nov 2009, 183 p. (in Russian). Available at:
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-

Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf, accessed
20.06.2018

. Klimov Yu.A. [Specializer CILPE: Partial evaluation for object-oriented languages].

Programmny'e sistemy': teoriia i prilozheniia [Program Systems: Theory and
Applications], no. 3(3), pp. 13-36, 2010 (in Russian). Available at:
http://psta.psiras.ru/read/psta2010_3 13-36.pdf, accessed 20.06.2018

. Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like

programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17-32

. Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.

MECS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977, pp.
59-77

39

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[21].

[22].

[23].

[24].

[29].

[30].

[31].

40

Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)
Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. Available at:
http://dx.doi.org/10.1145/154630.154636, accessed: 20.06.2018

Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341-370

Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02), Portland,
Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9-18. Available
at: http://doi.acm.org/10.1145/503032.503033, accessed 20.06.2018

. Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java. ACM

Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452499

. Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java

environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1-20. Available at:

http://www.usenix.org/publications/library/proceedings/coots97/muller.html, accessed
20.06.2018.

. Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.

2011, pp. 375-390. Available at: http://doi.acm.org/10.1145/2076021.2048098,
accessed 20.06.2018.

. JiR. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the 9th

International Conference on Integrated Formal Methods, IFM’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 283—295. Available at: http://dx.doi.org/10.1007/978-3-
642-30729-4 20, accessed 20.06.2018

Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. Available at:
https://doi.org/10.1007/978-3-319-49812-6, accessed 20.06.2018

Wiirthinger T., Wimmer C., W68 A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187—
204. Available at: http://doi.acm.org/10.1145/2509578.2509581, accessed 20.06.2018
Wiirthinger T., Wimmer C., Humer C., W68 A., Stadler L., Seaton C., Duboscq G., Simon
D., and Grimmer M. Practical partial evaluation for high-performance dynamic language
runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662—-676. Available at:
http://doi.acm.org/10.1145/3140587.3062381, accessed 20.06.2018.

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

MHTepaKTMBHbIﬁ cneuvanun3aTtop nogmMHoXxectTBa A3blKa
Java, OCHOBaHHbIN Ha MeTOAe YaCTUYHbIX BbIYNCIIEHUN

YU A. Adamosuu <i.a.adamovich@gmail.com>
2 Ano.B. Knumos <klimov@keldysh.ru>
' Uncmumym npozpammuvix cucmem um. A.K. Atinamazana PAH,
152021, Poccus, Apocrasckas 061., c. Becvkogo, yi. [lempa Ilepsoco, 0. 4a
2 Uncmumym npuxnaonoti mamemamuxu um. M.B. Kenoviua PAH,
125047, Poccus, Mocksa, Muycckas na., 0. 4

AnHotauus. Creunanu3anus — 3TO ONTHMH3ALMSA NPOrpaMM Ha OCHOBE MCIIOJIB30BaHHS
Hanepéz 3a71aHHoil MHPOPMANK O 3HAUYEHUH 4acTH IEePEeMEHHbIX. MeToabl creluanu3anuy
nporpaMm pasBuBatoTcs ¢ 1970-X ro0B (CMeIIaHHbIe BEIYUCICHUS, YaCTHYHbIE BEIYUCICHUS,
cynepkoMmmsinus). OIHAKO YAWBHUTEIBHO, YTO IOCIE TPEX NECATHIETHH pa3paboTaHHEIE
CIIEIMAIN3aTOPbI IO CHX IOp HE JOCTHUIIIM TOTO YPOBHS, KOTJIa OHM CTaHyT IIPUTOAHBI JUIS
IIMPOKOTO IIPAKTHYECKOr0 NMpUMeHeHHs. BosHmkaer Bompoc: B uéM sxe npumumHa? Hama
THIIOTE3a COCTOUT B TOM, YTO 33/lada CHELHaNIn3aluy TPeOyIoT ropa3fo OOJBIIETo yJacTHs
YeJI0BeKa B YNPABICHWHM IPOLECCOM CICLHANN3ALMH, aHAIU3E PE3yJIbTaTOB, NPOBEACHUH
KOMIIBIOTEPHBIX OJKCIHEPUMEHTOB, YeM B Cilydac OOBIYHOH ONTHMM3ALMK HPOrPaMMBbI B
koMmnuisATopax. Tpebyercs morpyxeHue CrieluaIn3aTopoB B IPUBBIYHBIE I IPOrPaMMHCTOB
UHTErPUPOBaHHbIE CPellbl Pa3pabOTKM, BKIIOYAS CO3JaHME COOTBETCTBYIOLIMX JHAOTOBBIX
cpencTB. B naHHOM cTaThe ONMMCHIBAIOTCS Pe3yibTaThl pa3pabOTKH M peasl3alliil METOJO0B
HMHTEPaKTUBHOM CIIENUAIM3allMd Ha OCHOBE YACTHYHBIX BBIUUCICHHN IJISI IOAMHOMKECTBA
s3bIKka Java. Peann3anust BBIIOJIHEHA B paMKax HOIMyJsipHO#t cpens! paspadbotku (IDE) Eclipse.
PazpabaTbIBatoTcst ClieHapUH Y€JI0BEKO-MAIIHHOTO JUajIoTa C ITOICUCTEMOH clieain3ainy,
MUHTEPAKTUBHBIC CPEICTBA Ul COCTABICHUS 3a/laHMsi Ha CHELMalM3alHUI0 M YyIpaBICHUE
HPOLIECCOM cHeluann3anuu. [IpuBoguTCs IpUMep YCIEHOTO IPUMEHEHHS pa3paboTaHHOTO
criennanusaropa. Ocraro4Has mporpaMma paboTaeT B HECKOJIBKO pa3 ObICTpee 4eM MCXO/HAS.

KioyeBble ci10Ba: aHanmu3 ImporpamM; INpeoOpa3oBaHHE IIPOrpaMM; HHTEPaKTHBHAS
CreUHaIU3alysl MPOrpaMM; YaCTUYHBIC BBIYHCICHUS; OOBCKTHO-OPHECHTHPOBAHHBINA SI3bIK;
cpelia pa3paboTKH IporpaMm

DOI: 10.15514/ISPRAS-2018-30(4)-2

Jas uutupoBanusi: Anamosuu M.A., KinumoB Auna.B. MHTepakTuBHBIN cnenuanuzaTop
MOJIMHOJKECTBA SI3bIKa Java OCHOBaHHBIM Ha MeTOJie YacTHYHBIX BbruucieHuil. Tpynst MCII
PAH, Tom 30, Bbim. 4, 2018 ., ctp. 29-44 (Ha anrmuiickoM si3bike). DOI: 10.15514/ISPRAS-
2018-30(4)-2

Cnucok nutepatypbl

[1]. Jones N.D., Sestoft P. and Sendergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124-140

41

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[2]. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993. [loctynHO 1o cchuIke:
http://www.itu.dk/~sestoft/pebook/pebook.html, nara obpamenus: 20.06.2018

[3]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45-50

[4]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381—
391. Updated and revised version of [3]. locTymHO 1O CCBUIKE:
http://doi.org/10.1023/A:1010095604496, nata oopamenus: 20.06.2018

[5]. Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. JlocTymHO 1O cChUIKE:
http:/fi.ftmr.info/PE-Museum/EL1.PDF, nara o6pauienus: 20.06.2018

[6]. Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292-325

[7]. Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International Andrei Ershov Memorial Conference, Akademgorodok,
Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in Computer Science,
D. Bjerner, M. Broy, and I.V. Pottosin, (Eds.), vol. 1181. Springer, 1996, pp. 227-248

[8]. Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Joctynso no
ceplike: https://www.eclipse.org, nata obpamenus: 20.06.2018

[9]. Eclipse Foundation. Eclipse Java development tools (JDT). locTymnHo 1o cchuike:
https://www.eclipse.org/jdt, nata obpamenus: 20.06.2018

[10]. Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78—84. JlocTynHO 1O CCBUIKE:
http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html, mara oOpamenus:
20.06.2018

[11]. KnumoB IO.A. OcoOeHHOCTH NpPUMEHEHHS METOJa YAaCTUYHBIX BBIYMCICHUH K
CHeLHaIN3aluy IporpaMM Ha 00BEKTHO-OPHEHTHPOBAHHBIX s3bIkax. [Ipenpuntsr UTIM
uMm. M.B. Kengpima, Ne 12, 2008. JlocTynHO 1o cChIIKe:
http://library.keldysh.ru/preprint.asp?id=2008-12, nara oopamenus: 20.06.2018

[12]. Kmumos FO.A. Bosmoxsoctu cnenuanuzatopa CILPE u npumepsl ero npuMeHeHHs K
nmporpaMMaM Ha OOBEKTHO-OPHEHTHPOBAHHBIX s3bIkax. [Ipempuuter UIIM mm. M.B.
Kengprma, Ne 30, 2008. JIocTyImHO 10 CChUIKE:
http:/library.keldysh.ru/preprint.asp?id=2008-30, nata obpamenus: 20.06.2018

[13]. Knumos FO.A. SOOL: 00beKTHO-OpUEHTUPOBAHHBIN CTEKOBBIH A3BIK A1 (OPMATIBHOTO
ONMCaHUsl U peajau3alvyd METOAOB crneuuanu3auuu nporpamm. IIpenpuntsr UIIM um.
M.B. Kengpima, Ne 44, 2008. JlocTymmHO MO CCHUIKE:
http://library.keldysh.ru/preprint.asp?id=2008-44, nara oopamenus: 20.06.2018

[14]. Kmumos FO.A. Cnenuanuzatop CILPE: ananu3s BpemeH cesasbiBanus. [Ipenpunter UTIM
uM. M.B. Kenapia, Ne 7, 2009. JIocTyIHO IO CChUIKE:
http://library.keldysh.ru/preprint.asp?id=2009-07, nara oopamenus: 20.06.2018

[15]. Knumos 10.A. Crnenmanuzarop CILPE: reneparms ocraTounoii nmporpaMmsl. [IpenpuHTs!
UIIM mm. M.B. Kennpimra, Ne 8, 2009. JlocTynmHO 1O CCBUIKE:
http:/library.keldysh.ru/preprint.asp?id=2009-08, nara obpamenus: 20.06.2018

42

Anamosuu NLA., KiumoB Auz.B. MHTepakTUBHBIH CrienMaan3aTop MOJIMHOXKECTBA SA3bIKa Java OCHOBAHHBIN Ha MeTO/e
4acTUYHBIX BeraucieHuit. Tpyoet UCII PAH, tom 30, Beim. 4, 2018 1., cTp. 29-44

[16].

[17].

[18].

[25].

[26].

Kmumos 10.A. Crnenuanuzatop CILPE: nokasarenscrBo koppekrHocTd. IIpenpuntsl
HIIM um. M.B. Kengpimra, Ne 33, 2009. JIoCTyITHO 1O CCBIIKE:
http:/library.keldysh.ru/preprint.asp?id=2009-33, nata obpamenus: 20.06.2018

Kmumos 10.A. Crnenmanuzanust nporpaMM Ha OOBEKTHO-OPHEHTHPOBAHHBIX S3BIKAX
METOZIOM YaCTHYHBIX BhraucieHui. Juc. K.¢.-M.H., UTHCTUTYT MpUKIIagHOH MaTeMaTHKK
um. M.B. Kenppimma PAH, Mocksa, Poccus, Hos6ps 2009, 183 cTp.

JoctymHo 1o ccbuike: http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf,

nara oopamenus: 20.06.2018

Kmumor 10.A. Cnemnmamuzatop CILPE: 4wactuuHble BBIYUCICHHS IS OOBEKTHO-
OpPHEHTHUPOBAHHBIX SI3BIKOB. IIporpaMmHBIe CHCTEMBI Teopust U nprioxeHns, Ne 3(3),
2010, ctp. 13-36 [octynHo 1o ceeuike: http://psta.psiras.ru/read/psta2010_3 13-36.pdf,
nata oopamenus: 20.06.2018

. Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like

programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17-32

. Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.

MECS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977, pp.
59-717

. Andersen L.O. Program analysis and specialization for the C programming language.

Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)

. Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the

1993 ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. JlocTymHO 1O CCBUIKE:
http://dx.doi.org/10.1145/154630.154636, nata obpamenus: 20.06.2018

. Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the

C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341-370

. Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming

languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02), Portland,
Oregon, USA, January 14-15,2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9-18. JocTymnHo
1o cchuike: http://doi.acm.org/10.1145/503032.503033, nata obpamenus: 20.06.2018
Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java. ACM
Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452499

Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1-20. JIocTyIHO 10 CChUIKE:

http://www.usenix.org/publications/library/proceedings/coots97/muller.html,
nara oopamenus: 20.06.2018

. Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.

2011, pp. 375-390. IoCTynHO IO CCHLIKE:
http://doi.acm.org/10.1145/2076021.2048098, nara o6pamenus: 20.06.2018

. JiR. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the 9th

International Conference on Integrated Formal Methods, IFM’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 283— 295. JIoCTyITHO IO CCBUIKE:
http://dx.doi.org/10.1007/978-3-642-30729-4 20, narta obpauienus: 20.06.2018

43

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

[29].

[30].

[31].

44

Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. [locTymHOo mo cChUIKE:
https://doi.org/10.1007/978-3-319-49812-6, nata obpamuenus: 20.06.2018

Wirthinger T., Wimmer C., W68 A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187—
204. [HoctymHo mo cchuike: http://doi.acm.org/10.1145/2509578.2509581, nmata
obpamenus: 20.06.2018

Wiirthinger T., Wimmer C., Humer C., W68 A., Stadler L., Seaton C., Duboscq G., Simon
D., and Grimmer M. Practical partial evaluation for high-performance dynamic language
runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662—676. JIOCTyIIHO 1O CCBUIKE:
http://doi.acm.org/10.1145/3140587.3062381, nara obpamuenus: 20.06.2018

