
29

An Interactive Specializer Based on
Partial Evaluation for a Java Subset

1 I. A. Adamovich <i.a.adamovich@gmail.com>
2 And. V. Klimov <klimov@keldysh.ru>

1 Ailamazyan Program Systems Institute of Russian Academy of Sciences,
4a Peter the First str., Veskovo, Yaroslavl region, 152021, Russia

2 Keldysh Institute of Applied Mathematics of Russian Academy of Sciences,
4 Miusskaya sq., Moscow, 125047, Russia

Abstract. Specialization is a program optimization approach that implies the use of a priori
information about values of some variables. Specialization methods are being developed since
1970s (mixed computations, partial evaluation, supercompilation). However, it is surprising,
that even after three decades, these promising methods have not been put into the wide
programming practice. One may wonder: What is the reason? Our hypothesis is that the task
of specialization requires much greater human involvement into the specialization process, the
analysis of its results and conducting computer experiments than in the case of common
program optimization in compilers. Hence, specializers should be embedded into integrated
development environments (IDE) familiar to programmers and appropriate interactive tools
should be developed. In this paper we provide a work-in-progress report on results of
development of an interactive specializer based on partial evaluation for a subset of the Java
programming language. The specializer has been implemented within the popular Eclipse IDE.
Scenarios of the human-machine dialogue with the specializer and interactive tools to compose
the specialization task and to control the process of specialization are under development. An
example of application of the current version of the specializer is shown. The residual program
runs several times faster than the source one.

Keywords: program analysis, program transformation, interactive program specialization,
partial evaluation, object-oriented language, integrated development environment.

DOI: 10.15514/ISPRAS-2018-30(4)-2

For citation: Adamovich I.A., Klimov And.V. An Interactive Specializer Based on Partial
Evaluation for a Java Subset. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 29-44.
DOI: 10.15514/ISPRAS-2018-30(4)-2

1 Supported by RFBR research project No. 18-37-00454 (contribution: development of
interactive methods of partial evaluation, design of the architecture and implementation of the
specializer, analysis of related works).
2 Supported by RFBR research project No. 16-01-00813 (contribution: problem statement,
design of methods based on the existing approaches, supervision, analysis of related works).

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

30

1. Introduction
The method of program specialization known as partial evaluation was invented
more than 30 years ago along with the achievement of the famous result [1], [2] of
evaluation of the First, Second and Third Futamura projections [3]–[5] for a tiny List
subset. The first round of research was completed in early 1990s when the main
textbook on partial evaluation had been published [2]. A lot of programming
problems were found to be solved by program specialization (the most known being
the generation of a compiler from an interpreter by the Second Futamura Projection)
and the emergence of a new class of program development tools based on
specialization were expected. Some other program specialization techniques, e.g.,
supercompilation [6], [7], has been developed in parallel as well. However, it is
surprising that even after three decades these promising methods have not been put
into the wide programming practice. One may wonder: What is the reason?
Our hypothesis is that the main expectation that governed the development of
specializers was wrong. The developers of these methods hoped that specializers
could work in fully automatic mode and they just needed to invent some finitely many
features and improvements that solve the problem, after which “the great goal” would
be achieved and happy programmers started using the new tools. They expected that
specializers could work in the similar “black-box mode” as optimizing compilers.
However this did not happen. The time and space complexity of the program
transformations that were necessary for specialization, turned out to be much higher
than the complexity of program optimizations that can be used as “black boxes” with
short and predictable run time and consumed memory.
We argue that automatic methods of program optimization have reached certain
inherent limits. In order to develop and use more powerful tools, we must give up the
expectations that the program analysis and transformation systems will operate in
automatic mode without human intervention. Program specializers possess too many
degrees of freedom and choice, which cannot be resolved by the algorithms of their
kind and, therefore, should use human help.
Based on this observation, we put forward the goal of construction of an interactive
specializer embedded in a habitual integrated development environment (IDE) such
as Eclipse [8]. Eclipse provides a rich open-source toolkit referred to as Java
development tools (JDT) [9], which allows a developer to deal only with essential
tasks of analysis, visualization and transformation of Java code. Adequate human-
machine dialogue tools to control the specializer and deal with the results of
specialization are to be developed. We would like to emphasize that there is strict
separation of concerns between the machine and the human: the specializer guaranties
the functional equivalence of program transformation and the user is responsible for
the control of the specializer in such a way that it produces the code that satisfied
user’s goals and needs (which the machine does not know).

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

31

Fig.1. Source code of Ackermann function

We think that partial evaluation is better suited than other specialization methods (like
supercompilation) for human-machine dialogue organized in such a way that the user
comprehends what is happing in the specializer, receives valuable and interesting
information about his code, is capable of adjusting the source code to be better
specialized and controls the specializer. The reason is that the method of partial
evaluation consists of two stages:

 binding-time analysis (BTA) of source code that selects the parts of the
code that are to be evaluated at specialization time, and

 residual program generation (RPG) that follows the information supplied
by BTA, performs specialization proper and produces the resulting code
(referred to as residual).

A pleasant feature of BTA is that its result (called BT annotation) may be naturally
shown on the source code by highlighting and due to such visualization the residual
code is intuitively predictable. We hope that this will allow for easy adoption of
specializers as new programming tools by rank-and-file programmers.
Terminological remark. In the theory of partial evaluation the parts of source code to
be evaluated during specialization are called static. The other source code that is
transferred to the residual program (residualized) is referred to as dynamic. The term
static conflicts with the static modifier in Java and the term dynamic may be
confused with the run-time notions. That is why we avoid using these words in the
partial evaluation sense and use abbreviations S and D instead, e.g.,
S-annotation, D-annotation, S-code, D-code, S-part and D-part of a program.
The contributions of this paper are as follows.

 We show the first results of development of the Java specializer, where
partially evaluated code is restricted to operations on primitive types.

 We demonstrate the work of the specializer by an example of specialization
of the Ackermann function with respect to the first argument.

 We discuss some of the details of implementation in Eclipse and the
methods and features to be implemented in future.

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

32

Fig. 2. Residual code of Ackermann function

The outline of the paper is as follows. In Section 2 we present the basics of partial
evaluation for Java by an example of specialization of the Ackermann function. In
Section 3 a bird-eye view of the implementation of the specializer in the Eclipse IDE
is presented. Section 4 contains a survey of related works in comparison with our
specializer. In Section 5 we conclude.

2. Java Specialization by Example
Fig. 1 and 2 contain screenshots of the source and residual code of the Ackermann
function made from the running specializer in Eclipse IDE.
The method A implements the Ackermann function and the method test invokes it
with the first constant argument 3. The Java annotation @Specialize at the
method test specifies that it should be specialized, i.e., its body is to be replaced
with the residual code and the specialized versions of the methods that it invokes are
to be generated and added to the program. The names of the methods A and test in
their headers are marked in orange in order to show that they are involved in BTA.
The bodies of these methods are analyzed and annotated: green highlighting marks
S-parts of code. (You see gray highlighting in fig. 1 if you read this paper in a
monochrome print).

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

33

2.1. Binding-Time Analysis
The BTA algorithm for variables and operations of primitive types is rather
straightforward. First, all constants are annotated with S. Then recursively: a
subexpression containing only S-parts becomes S; a local variable declaration and an
assignment with S right-hand sides become S; a method parameter that correspond to
S arguments at all points of invocation becomes S; in case of conflict of several
invocations of the same method the conflicting parameter becomes D; a conflict on
several assignments to a local variable turns it to D as well; an if statement with the
S conditional expression is annotated with S regardless of the annotation of its
branches (this means that if-else will disappear while one of the branches will be
residualized); other control statements are analyzed and annotated similarly. When
the recursion reaches the fixed point, the remaining parts of code are annotated with
D. D-parts are not highlighted in Figure 1.
This mode of operation of BTA, when each code fragment gets univocal annotation
S or D, is referred to as monovariant. The more general mode when several versions
of annotation are allowed is called polyvariant. The current version of BTA is
monovariant. In future we plan to implement polyvariant BTA for classes and
reference types according the theory developed in [10]–[18].
Monovariant BTA on primitive types can be defined formally as abstract
interpretation on a lattice with 3 elements: undefined < S < D.

As an illustration of monovariance, notice that in figure 1 method A is invoked 3 times
in the source code, one of which has both S arguments, another 2 invocations have
the first S argument and the second one is D. The first invocation is processed in the
same way as the other two with the second S argument assigned to the D formal
parameter.

2.2. Residual Program Generation
At the generation stage, partial evaluation starts from the method with the
@Specialize annotation and recursively visits all invoked methods in turn. Notice
that, since all statements and methods with side effects are considered D and hence
are residualized rather than executed at specialization time, the order of specialization
of methods does not matter. For each of the specialized methods, several residual
versions can be produced — one for each combination of values of S arguments. They
got different names of the form (in the current version):
source-name_number. They have only those parameters that correspond to D
parameters in the source code.
The current version of the specializer can loop forever if infinitely many values of S
arguments are generated. The production version of the specializer should contain
special debugging means to gracefully leave such situations. This is our future work.
In Figure 2 there are 4 versions of residual method A corresponding to values 0, 1, 2,
3 of its first argument. Notice that because of monovariance the invocations

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

34

A_2(1), A_1(1), and A_0(1) have not being evaluated, since the constant 1
correspond to the D parameter of method A.

2.3. Running Source and Residual Programs
We have chosen this example for presentation, since it demonstrates all main features
of the current version of the specializer. We did not expect a significant speed-up as
it seemed that asymptotically the number of method invocations was almost the same
and the invocations were the most expensive operations in this example. Thus we
were very surprised when the speed-up was about 3 times.
The obtained acceleration can be explained by several reasons. First, calculation
showed that the specialized version performs 1.86 times less Java byte code
instructions. Second and more important, it is natural to suppose that the JIT compiler
in JVM performs inlining of those specialized method that are simpler and more
compact than in the source code.
This example illustrates the principle, which we observed many times in experiments
with various specializers: a specializer does not replace the classic optimizing
compilers. Rather, we observe “composition” of optimizations by a specializer and a
low-level optimizing compiler and hence multiplication of speed-ups. Residual code
produced by specializers is more amendable for classic optimizations than code
written by a human being. We may conclude that specialization opens up additional
opportunities for program optimization.

3. Architecture of Specializer
The specializer has been implemented in the Eclipse development environment (IDE)
[8]. The IDE has open source code and provides points and tools to extend it.
The basis for Eclipse extension is the concept of a plug-in. Each plug-in is an archive
JAR file containing a so-called manifest, a set of files describing the dependencies of
the plug-in and the possibility of its extension (extension points). Other plug-ins can
add their functionality to these extension points. For example, one might want to add
his toolbar extensions to an already implemented toolbar plug-in.
A small tool is usually implemented as a one plug-in, while a large one is often
provided as a set of plug-ins. Our specializer is implemented as three Eclipse plug-
ins.
The specializer consists of the following plug-ins:

 a plug-in SpecCore is the core of the specializer, which implements its
main functionality;

 a plug-in SpecMarkers is responsible for text highlighting in the Eclipse
editor in accordance with the annotation produced by the SpecCore plug-in;

 a plug-in SpecMenus implements interactions with various menus
(including context menus) and toolbars to provide a user-friendly interface.

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

35

The SpecCore implements the binding-time analysis (BTA) and the generation of a
residual program. When analyzing the source program the plug-in SpecCore uses the
abstract syntax tree (AST) built by the Eclipse Java development tools (JDT).
JDT is a set of plug-ins that provides us with an easy way to manipulate Java source
code.
The second of the three plug-ins that form the specializer is the SpecMarkers plug-in.
It is responsible for highlighting the source code, which allows the programmer to see
which parts of the program are evaluated at specialization time and which are
residualized. This helps him to understand how to change the code to provide better
specialization.
The last part of the specializer is the SpecMenus plug-in. This plug-in uses the
extension points of other plug-ins to add the necessary elements to some menus. It
adds two new buttons to the main toolbar of Eclipse: Enable/Disable the highlighting
and the “Generate optimized Java files” button. Also this plug-in adds items to the
context menu of the Project Explorer and Package Explorer views.

4. Related Work and Comparison
A lot of works are devoted to partial evaluation for functional languages. The book
[2] summarizes the first wave of development of this method.
Later on, research into partial evaluation for imperative “Algol-like” languages [19],
[20] and C [21] was performed. In early 1990's, the first (to our knowledge)
specializer for C was developed, called C-MIX [21], [22]. Chapter 11 of the book [2]
contains its detailed presentation. C-MIX specializes a program in three stages.
The first stage is the analysis of references. For each reference variable, a set of the
variables that it could refer to is built. If the analysis finds that several reference
variables can refer to the same memory, they are labeled identically. The second stage
is the construction of a binding-time annotation of the source code. References to the
same memory area are annotated identically. In case of conflicts, the annotation is
reduced to D as usual. The third stage is the generation of the residual program.
Specialization of reference types in Java can be similar to elaboration of pointers in
C-MIX. However, Java stricter typing and managed run-time can be leveraged for
deeper specialization. The current version of our specializer annotates all reference
variables D and, therefore, they are left unchanged. Our future work is to add the
binding-time analysis of reference types. Unlike C-MIX, we expect that our
specializer will still work in two stages — without the reference analysis phase.
Further development of ideas of C-MIX led to the creation of a specializer of
programs written in C, called Tempo [23], [24]. This specializer is much like C-MIX.
The next important step was the development of the first specializer for an object-
oriented language — JSpec for Java [25]. JSpec uses the Harissa compiler [26] to
translate the Java program into C. Then the Tempo specializer mentioned above
transforms the program. The obtained C-representation of a specialized Java program
is mapped back into Java using the Assirah translator [25]. Finally, the AspectJ tool

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

36

weaves the specialized program with the source program to get the executable Java
bytecode. The main limitation of JSpec is that it is capable of partially evaluating only
immutable classes and objects, while mutable objects are always residualized. Our
goal is to waive this restriction.
The most advanced (to our knowledge) partial evaluation method for object-oriented
languages like C# and Java has been developed in CILPE [10]–[18], a partial
evaluator for Common Intermediate Language (CIL), the bytecode of the Microsoft
.NET Framework. It supports almost all of the basic constructs of object-oriented
languages such as C# and Java. In CILPE, a new concept of a binding-time heap (BT
heap) has been introduced. A BT heap is an abstract description of the state of a run-
time heap, which allows us to separate reference type data into evaluated at
specialization time and residualized ones and to avoid the use of the reference analysis
stage as in C-MIX. As a result of specialization, some of the objects are no longer
created in the residual program, and if necessary, local variables are used instead of
object fields. We will base on the results of this research in our future work to
implement BTA of classes and partial evaluation of objects.
A relatively new specializer of Java programs is Civet [27]. Civet is based on a so-
called Hybrid Partial Evaluation (HPE) approach. Specialization in HPE is performed
in online mode, i.e., in one pass, while the programmer can specify which parts of the
program have S-annotation. On the contrary, in our specializer we choose the offline
approach, i.e., the residual program is built at the stage of generation of the residual
program after the completion of the binding-time analysis,
where information about the S-parts of the program is collected automatically rather
than specified by the user as in Civet1.
PE-KeY [28] is a partial evaluator for Java programs based on the KeY verification
system [29]. PE-Key works in two stages. At the first stage, the program is executed
in a symbolic form with the application of a special set of rules. At the second stage,
a residual program is synthesized, while the rules are applied in the opposite direction.
The PE-KeY approach is similar to the classical offline specialization that our
specializer uses: a specialized program is produced in two stages. However, in the
first stage of PE-KeY, the program is executed symbolically, while our binding-time
analysis performs an abstract interpretation of the program. In addition, due to
limitations of the KeY verification system, PE-KeY does not support floating-point
arithmetic, while our specializer supports.
JSpec, Civet, PE-Key deal with objects at specialization time, while the current
version of our specializer annotates classes and variables of reference types with D
and thus residualizes them unchanged. The extension of our specializer to partial
evaluation of classes and objects is our future work.

1 For discussion of the features of and differences between online and offline partial evaluation
see [2, Chapter 7].

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

37

The specializers considered above interact with the user through the command line,
so it's extremely difficult to use them. In order for the specialization to be widely
used, it is required to develop the methods of interaction with the user and to embed
the specializer into an integrated development environment convenient for the
programmer, what we are implementing in our specializer. This is a crucial difference.
We know about just one work on partial evaluation carried out in a practical setting –
the GraalVM toolkit in Oracle Labs [30], [31]. The toolkit is designed for defining
domain-specific languages by interpreters and, nevertheless, achieving high-
performance by using a specializer. The first Futamura projection provides an
opportunity for such acceleration (see [3], [4] and [2, Chapter 1.5.1]): given a program
and an interpreter that executes the program, GraalVM specializes the interpreter with
respect to a part of the given program and produces the machine code of this part. The
resulting code is executed much faster than the original one in the interpreter. The
main goal of GraalVM is to provide a technology similar to just-in-time (JIT)
compilation for the developer of a programming language without the need to
implement the complex machinery of JIT. The interpreter specialization in GraalVM
is not automatic and uses prompts by the interpreter developer. This case of
implementation of partial evaluation confirms that practical application of
specialization requires guidance from the programmer. We conduct our research in
the same direction: methods and tools are being developed to provide the programmer
with information about program behavior under specialization and levers to control
the partial evaluation processes.

5. Conclusion
In this paper we put forward the task of development of an interactive specializer.
We argue that the current stage of program specialization methods has reached certain
limits because the previously implemented specializers do not imply the participation
of the user in the process of specialization. Our specializer uses the offline partial
evaluation approach, where the program transformation if performed in two stages —
binding-time analysis (BTA) and residual program generation (RPG). We briefly
described the architecture of our interactive specializer in the Eclipse development
environment.
We illustrated the work of the specializer with the famous example of the Ackermann
function and the result of its specialization with respect to its first argument. The
specialized program runs several times (about three) faster than the original one.
We see the following directions for further development of the specializer:

 to develop and implement binding-time analysis and residual program
generation for classes and objects;

 to implement interactive tools for composing a specialization task and
controlling the process of binding-time analysis and residual program
generation;

 to implement tools to visualize the correspondence between source and

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

38

residual code;

 to demonstrate that a well-developed specializer can convert
well-structured high-level human-oriented code, which can not be
automatically parallelized, into code that can be parallelized by existing
methods and tools;

 to prepare demo programs that benefit from specialization, for example,
building a compiler from an interpreter;

 to generalize the binding-time analysis from monovariant to polyvariant;

 to develop an interactive tracer (similar to run-time debuggers) that allows
the user to observe the analysis and generation processes in order to
improve the behavior of his code under specialization.

Availability. The current version of our specializer is available at
ftp://ftp.botik.ru/rented/iaadamovich/Specializer/.

Acknowledgment
We are grateful to our friends and colleagues Yuri Klimov, Arkady Klimov, Sergei
Romanenko, Sergei Abramov for valuable advices on specialization methods in
general and partial evaluation in particular and constructive feedback on the design
of our specializer system.

References
[1]. Jones N.D., Sestoft P. and Søndergaard H. An experiment in partial evaluation: the

generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124–140

[2]. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993, 415 p. Available at:
http://www.itu.dk/~sestoft/pebook/pebook.html, accessed 20.06.2018

[3]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45–50

[4]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381–
391. Updated and revised version of [3]. Available at:
http://doi.org/10.1023/A:1010095604496, accessed 20.06.2018

[5]. Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. Available at:
http://fi.ftmr.info/PE-Museum/EL1.PDF, accessed 20.06.2018

[6]. Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292–325

[7]. Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International Andrei Ershov Memorial Conference, Akademgorodok,

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

39

Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in Computer Science,
D. Bjørner, M. Broy, and I.V. Pottosin, (Eds.), vol. 1181. Springer, 1996, pp. 227–248

[8]. Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Available at:
https://www.eclipse.org, accessed 20.06.2018

[9]. Eclipse Foundation. Eclipse Java development tools (JDT). Available at:
https://www.eclipse.org/jdt, accessed 20.06.2018

[10]. Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2–5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78–84. Available at: http://meta2008.pereslavl.ru/accepted-
papers/paper-info-6.html, accessed 20.06.2018

[11]. Klimov Yu.A. [Program specialization for object-oriented languages by partial
evaluation: approaches and problems]. Preprinty` IPM im. M.V. Keldy`sha [Keldysh
Institute Preprints], no. 12, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-12, accessed 20.06.2018

[12]. Klimov Yu.A. [Specializer CILPE: examples of object-oriented program specialization].
Preprinty` IPM im. M.V. Keldy`sha [Keldysh Institute Preprints], no. 30, 2008 (in
Russian). Available at: http://library.keldysh.ru/preprint.asp?id=2008-30, accessed
20.06.2018

[13]. Klimov Yu.A. [SOOL: an object-oriented stacked-based language for specification and
implementation of program specialization techniques]. Preprinty` IPM im. M.V.
Keldy`sha [Keldysh Institute Preprints], no. 44, 2008 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2008-44, accessed 20.06.2018

[14]. Klimov Yu.A. [Specializer CILPE: binding time analysis]. Preprinty` IPM im. M.V.
Keldy`sha [Keldysh Institute Preprints], no. 7, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-07, accessed 20.06.2018

[15]. Klimov Yu.A. [Specializer CILPE: residual program generation]. Preprinty` IPM im.
M.V. Keldy`sha [Keldysh Institute Preprints], no. 8, 2009 (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-08, accessed 20.06.2018

[16]. Klimov Yu.A. [Specializer CILPE: correctness proof]. Preprinty` IPM im. M.V.
Keldy`sha [Keldysh Institute Preprints], no. 33, 2009, (in Russian). Available at:
http://library.keldysh.ru/preprint.asp?id=2009-33, accssed 20.06.2018

[17]. Klimov Yu.A. [Specialization of programs in object-oriented languages by partial
evaluation]. Ph.D. dissertation, Keldysh Institute of Applied Mathematics of RAS,
Moscow, Russia, Nov 2009, 183 p. (in Russian). Available at:
http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf, accessed
20.06.2018

[18]. Klimov Yu.A. [Specializer CILPE: Partial evaluation for object-oriented languages].
Programmny`e sistemy`: teoriia i prilozheniia [Program Systems: Theory and
Applications], no. 3(3), pp. 13–36, 2010 (in Russian). Available at:
http://psta.psiras.ru/read/psta2010_3_13-36.pdf, accessed 20.06.2018

[19]. Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like
programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17–32

[20]. Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.
MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977, pp.
59–77

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

40

[21]. Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)

[22]. Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. Available at:
http://dx.doi.org/10.1145/154630.154636, accessed: 20.06.2018

[23]. Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341–370

[24]. Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02), Portland,
Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9–18. Available
at: http://doi.acm.org/10.1145/503032.503033, accessed 20.06.2018

[25]. Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java. ACM
Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452–499

[26]. Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1–20. Available at:
http://www.usenix.org/publications/library/proceedings/coots97/muller.html, accessed
20.06.2018.

[27]. Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.
2011, pp. 375–390. Available at: http://doi.acm.org/10.1145/2076021.2048098,
accessed 20.06.2018.

[28]. Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the 9th
International Conference on Integrated Formal Methods, IFM’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 283– 295. Available at: http://dx.doi.org/10.1007/978-3-
642-30729-4_20, accessed 20.06.2018

[29]. Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification – The KeY Book – From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. Available at:
https://doi.org/10.1007/978-3-319-49812-6, accessed 20.06.2018

[30]. Würthinger T., Wimmer C., Wöß A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187–
204. Available at: http://doi.acm.org/10.1145/2509578.2509581, accessed 20.06.2018

[31]. Würthinger T., Wimmer C., Humer C., Wöß A., Stadler L., Seaton C., Duboscq G., Simon
D., and Grimmer M. Practical partial evaluation for high-performance dynamic language
runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662–676. Available at:
http://doi.acm.org/10.1145/3140587.3062381, accessed 20.06.2018.

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

41

Интерактивный специализатор подмножества языка
Java, основанный на методе частичных вычислений

1 И.А. Адамович <i.a.adamovich@gmail.com>
2 Анд.В. Климов <klimov@keldysh.ru>

1 Институт программных систем им. А.К. Айламазяна РАН,
152021, Россия, Ярославская обл., с. Веськово, ул. Петра Первого, д. 4а

2 Институт прикладной математики им. М.В. Келдыша РАН,
125047, Россия, Москва, Миусская пл., д. 4

Аннотация. Специализация — это оптимизация программ на основе использования
наперёд заданной информации о значении части переменных. Методы специализации
программ развиваются с 1970-х годов (смешанные вычисления, частичные вычисления,
суперкомпиляция). Однако удивительно, что после трёх десятилетий разработанные
специализаторы до сих пор не достигли того уровня, когда они станут пригодны для
широкого практического применения. Возникает вопрос: в чём же причина? Наша
гипотеза состоит в том, что задача специализации требуют гораздо большего участия
человека в управлении процессом специализации, анализе результатов, проведении
компьютерных экспериментов, чем в случае обычной оптимизации программы в
компиляторах. Требуется погружение специализаторов в привычные для программистов
интегрированные среды разработки, включая создание соответствующих диалоговых
средств. В данной статье описываются результаты разработки и реализации методов
интерактивной специализации на основе частичных вычислений для подмножества
языка Java. Реализация выполнена в рамках популярной среды разработки (IDE) Eclipse.
Разрабатываются сценарии человеко-машинного диалога с подсистемой специализации,
интерактивные средства для составления задания на специализацию и управление
процессом специализации. Приводится пример успешного применения разработанного
специализатора. Остаточная программа работает в несколько раз быстрее чем исходная.

Ключевые слова: анализ программ; преобразование программ; интерактивная
специализация программ; частичные вычисления; объектно-ориентированный язык;
среда разработки программ

DOI: 10.15514/ISPRAS-2018-30(4)-2

Для цитирования: Адамович И.А., Климов Анд.В. Интерактивный специализатор
подмножества языка Java основанный на методе частичных вычислений. Труды ИСП
РАН, том 30, вып. 4, 2018 г., стр. 29-44 (на английском языке). DOI: 10.15514/ISPRAS-
2018-30(4)-2

Список литературы

[1]. Jones N.D., Sestoft P. and Søndergaard H. An experiment in partial evaluation: the
generation of a compiler generator. Rewriting Techniques and Applications, Lecture
Notes in Computer Science, J.-P. Jouannaud, (Ed.), vol. 202. Springer-Verlag, 1985, pp.
124–140

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

42

[2]. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993. Доступно по ссылке:
http://www.itu.dk/~sestoft/pebook/pebook.html, дата обращения: 20.06.2018

[3]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls, vol. 2, no. 5, 1971, pp. 45–50

[4]. Futamura Y. Partial evaluation of computation process — an approach to a compiler-
compiler. Higher-Order and Symbolic Computation, vol. 12, no. 4, Dec 1999, pp. 381–
391. Updated and revised version of [3]. Доступно по ссылке:
http://doi.org/10.1023/A:1010095604496, дата обращения: 20.06.2018

[5]. Futamura Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing
Technology, Harvard University, Tech. Rep., 1973. Доступно по ссылке:
http://fi.ftmr.info/PE-Museum/EL1.PDF, дата обращения: 20.06.2018

[6]. Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming
Languages and Systems, vol. 8, no. 3, 1986, pp. 292–325

[7]. Turchin V.F. Supercompilation: techniques and results. Perspectives of System
Informatics, Second International Andrei Ershov Memorial Conference, Akademgorodok,
Novosibirsk, Russia, June 25-28, 1996. Proceedings, Lecture Notes in Computer Science,
D. Bjørner, M. Broy, and I.V. Pottosin, (Eds.), vol. 1181. Springer, 1996, pp. 227–248

[8]. Eclipse Foundation. Eclipse Integrated Development Environment (IDE). Доступно по
ссылке: https://www.eclipse.org, дата обращения: 20.06.2018

[9]. Eclipse Foundation. Eclipse Java development tools (JDT). Доступно по ссылке:
https://www.eclipse.org/jdt, дата обращения: 20.06.2018

[10]. Klimov Yu.A. An approach to polyvariant binding time analysis for a stack-based
language. First International Workshop on Metacomputation in Russia, Proceedings.
Pereslavl-Zalessky, Russia, July 2–5, 2008. Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2008, pp. 78–84. Доступно по ссылке:
http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html, дата обращения:
20.06.2018

[11]. Климов Ю.А. Особенности применения метода частичных вычислений к
специализации программ на объектно-ориентированных языках. Препринты ИПМ
им. М.В. Келдыша, № 12, 2008. Доступно по ссылке:
http://library.keldysh.ru/preprint.asp?id=2008-12, дата обращения: 20.06.2018

[12]. Климов Ю.А. Возможности специализатора CILPE и примеры его применения к
программам на объектно-ориентированных языках. Препринты ИПМ им. М.В.
Келдыша, № 30, 2008. Доступно по ссылке:
http://library.keldysh.ru/preprint.asp?id=2008-30, дата обращения: 20.06.2018

[13]. Климов Ю.А. SOOL: объектно-ориентированный стековый язык для формального
описания и реализации методов специализации программ. Препринты ИПМ им.
М.В. Келдыша, № 44, 2008. Доступно по ссылке:
http://library.keldysh.ru/preprint.asp?id=2008-44, дата обращения: 20.06.2018

[14]. Климов Ю.А. Специализатор CILPE: анализ времен связывания. Препринты ИПМ
им. М.В. Келдыша, № 7, 2009. Доступно по ссылке:
http://library.keldysh.ru/preprint.asp?id=2009-07, дата обращения: 20.06.2018

[15]. Климов Ю.А. Специализатор CILPE: генерация остаточной программы. Препринты
ИПМ им. М.В. Келдыша, № 8, 2009. Доступно по ссылке:
http://library.keldysh.ru/preprint.asp?id=2009-08, дата обращения: 20.06.2018

Адамович И.А., Климов Анд.В. Интерактивный специализатор подмножества языка Java основанный на методе
частичных вычислений. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 29-44

43

[16]. Климов Ю.А. Специализатор CILPE: доказательство корректности. Препринты
ИПМ им. М.В. Келдыша, № 33, 2009. Доступно по ссылке:
http://library.keldysh.ru/preprint.asp?id=2009-33, дата обращения: 20.06.2018

[17]. Климов Ю.А. Специализация программ на объектно-ориентированных языках
методом частичных вычислений. Дис. к.ф.-м.н., Институт прикладной математики
им. М.В. Келдыша РАН, Москва, Россия, ноябрь 2009, 183 стр.
Доступно по ссылке: http://pat.keldysh.ru/~yura/publications/2009.10-Klimov-Disser-
Specializacia_programm_na_ob'ektno-orientirovannyx_yazykah.pdf,
дата обращения: 20.06.2018

[18]. Климов Ю.А. Специализатор CILPE: частичные вычисления для объектно-
ориентированных языков. Программные системы теория и приложения, № 3(3),
2010, стр. 13–36 Доступно по ссылке: http://psta.psiras.ru/read/psta2010_3_13-36.pdf,
дата обращения: 20.06.2018

[19]. Bulyonkov M.A. and Kochetov D.V. Practical aspects of specialization of Algol-like
programs. Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer Science,
O. Danvy, R. Gluck, and P. Thiemann, (Eds.), vol. 1110. Springer, 1996, pp. 17–32

[20]. Ershov A.P. and Itkin V.E. Correctness of mixed computation in Algol-like programs.
MFCS, Lecture Notes in Computer Science, J. Gruska, (Ed.), vol. 53. Springer, 1977, pp.
59–77

[21]. Andersen L.O. Program analysis and specialization for the C programming language.
Ph.D. dissertation, DIKU, University of Copenhagen, May 1994, (DIKU report 94/19)

[22]. Andersen L.O. Binding-time analysis and the taming of C pointers. Proceedings of the
1993 ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM '93). ACM, 1993, pp. 47-58. Доступно по ссылке:
http://dx.doi.org/10.1145/154630.154636, дата обращения: 20.06.2018

[23]. Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the
C language. Sci. Comput. Program., vol. 52, no. 1-3, 2004, pp. 341–370

[24]. Meur A.L., Lawall J.L. and Consel C. Towards bridging the gap between programming
languages and partial evaluation. Proceedings of the 2002 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM ’02), Portland,
Oregon, USA, January 14-15, 2002, P. Thiemann, (Ed.). ACM, 2002, pp. 9–18. Доступно
по ссылке: http://doi.acm.org/10.1145/503032.503033, дата обращения: 20.06.2018

[25]. Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java. ACM
Trans. Program. Lang. Syst., vol. 25, no. 4, 2003, pp. 452–499

[26]. Muller G., Moura B., Bellard F. and Consel C. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. Proceedings of the Third USENIX
Conference on Object-Oriented Technologies (COOTS), June 16-20, 1997, Portland,
Oregon, USA, S. Vinoski, (Ed.). USENIX, 1997, pp. 1–20. Доступно по ссылке:
http://www.usenix.org/publications/library/proceedings/coots97/muller.html,
дата обращения: 20.06.2018

[27]. Shali A. and Cook W.R. Hybrid partial evaluation. SIGPLAN Not., vol. 46, no. 10, Oct.
2011, pp. 375–390. Доступно по ссылке:
http://doi.acm.org/10.1145/2076021.2048098, дата обращения: 20.06.2018

[28]. Ji R. and Bubel R. PE-KeY: A partial evaluator for Java programs. Proceedings of the 9th
International Conference on Integrated Formal Methods, IFM’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 283– 295. Доступно по ссылке:
http://dx.doi.org/10.1007/978-3-642-30729-4_20, дата обращения: 20.06.2018

Adamovich I.A., Klimov And. V. An Interactive Specializer Based on Partial Evaluation for a Java Subset. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 29-44

44

[29]. Ahrendt W., Beckert B., Bubel R., Hahnle R., Schmitt P.H. and Ulbrich M., (Eds.).
Deductive Software Verification — The KeY Book — From Theory to Practice. Lecture
Notes in Computer Science. Springer, 2016, vol. 10001. Доступно по ссылке:
https://doi.org/10.1007/978-3-319-49812-6, дата обращения: 20.06.2018

[30]. Würthinger T., Wimmer C., Wöß A., Stadler L., Duboscq G., Humer C., Richards G.,
Simon D., and Wolczko M. One VM to rule them all. Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187–
204. Доступно по ссылке: http://doi.acm.org/10.1145/2509578.2509581, дата
обращения: 20.06.2018

[31]. Würthinger T., Wimmer C., Humer C., Wöß A., Stadler L., Seaton C., Duboscq G., Simon
D., and Grimmer M. Practical partial evaluation for high-performance dynamic language
runtimes. SIGPLAN Not., vol. 52, no. 6, Jun. 2017, pp. 662–676. Доступно по ссылке:
http://doi.acm.org/10.1145/3140587.3062381, дата обращения: 20.06.2018

