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Abstract. Embedded platforms with heterogeneous architecture, considered in this paper, 
consist of one primary and one or more secondary processors. Development of software 
systems for these platforms poses substantial difficulties, requiring a distinct set of tools for 
each constituent of the heterogeneous system. It also makes achieving high efficiency the more 
difficult task. Moreover, many use cases of embedded systems require runtime configuration, 
that cannot be easily achieved with usual approaches. This work presents a C-like 
metaprogramming DSL and a library that provides a unified interface for programming 
secondary processors of heterogeneous systems with this DSL. Together they help to resolve 
aforementioned problems. The DSL is embedded in C++ and allows to freely manipulate its 
expressions and thus embodies the idea of generative programming, when the expressive power 
of high-level C++ language is used to compose pieces of low-level DSL code. Together with 
other features, such as generic DSL functions, it makes the DSL a flexible and powerful tool 
for dynamic code generation. The approach behind the library is dynamic compilation: the DSL 
is translated to LLVM IR and then compiled to native executable code at runtime. It opens a 
possibility of dynamic code optimizations, e.g. runtime function specialization for specific 
parameters known only at runtime. Flexible library architecture allows simple extensibility to 
any target platform supported by LLVM. At the end of the paper a system approbation on 
different platforms and a demonstration of dynamic optimizations capability are presented. 
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1. Introduction 
Embedded systems have been in a widespread use a long time, and today they become 
even more relevant because of the rapid development and adoption of new 
application fields, for example, Internet-of-Things, ”smart houses” and robotics. 
Many of the embedded systems used in these areas have heterogeneous architectures 
due to nature of their tasks. Typically, they consist of one primary, more powerful 
processor that executes the main program and performs common control, and one or 
several secondary microcontrollers or processors that provide read/write access to 
sensors and peripheral devices or may perform some other special functions. 
Examples of such systems may be: Raspberry Pi (main) + Arduino with Atmel AVR 
(peripheral) and Odroid XU4 (main) + stm32f4 microcontroller (peripheral). 
Heterogeneity of these systems causes noticeable overhead. Traditional development 
workflow requires use of IDEs and toolchains that are specific for each part of the 
system. This need to develop each part of the system in a separate project using a 
different set of platform-specific tools makes system development processes more 
complex and expensive. The amounts of resources required for support and changes 
also grow. 
The efficiency of the system suffers too. Due to specificities of each microcontroller 
and their limited hardware capabilities they often have only basic firmware, which 
only capabilities are reading sensors, communicating results back to main processor, 
receiving data and control commands from it and writing the received data to special 
registers of peripheral devices. All core program logic is contained on the primary 
processor, and, as secondary processors/microcontrollers do not contain even a part 
of this logic, constant communication between them is unavoidable (because of the 
nature of control cycle: request sensor data, wait for it to arrive, compute control 
output, send it back to the secondary processors, repeat). 
This work is based on preliminary results of [1] that showed the viability of the idea 
of dynamic code generation. We revise previous architectural choices, fully 
reimplement the library because of shortcomings of existing implementation and 
substantially extend it in terms of functionality and possible applications/uses. 
In particular, the new DSL is completely abstracted from other parts of the library 
and can be used independently in other projects based on the idea of 
metaprogramming. Moreover, the new DSL implementation allows employing 
various dynamic optimizations, which are not possible in heterogeneous systems 
using traditional programming techniques. The contribution of this work is twofold. 
We present: 

 C++ embedded DSL for dynamic metaprogramming; 

 a library that simplifies development of programs for heterogeneous systems 
providing unified programming interface; it also allows to achieve higher 
efficiency of the system and implement better organizations of work 
between its parts. 
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The library is based on the idea of a dynamic compilation of programs for peripheral 
processors. 
We also demonstrate system’s capabilities on a number of examples that show 
important features of the new DSL and some applications in embedded systems 
domain. Source code with build instructions can be found in the project repository1. 
Several possible use cases of this library can be imagined. First use case is avoiding 
the overhead of constant communication between processors. Of course, it’s possible 
to accomplish it without this library: move part of the program logic to peripheral 
processors on top of their basic firmware. However, with usual tools, it incurs 
additional costs for development and support because with this approach there is no 
more single point of change in core logic of the system. There is unavoidable need to 
support several projects and ensure proper integration. Whereas presented library 
allows avoiding both communication overhead and unnecessary complexity of the 
development process. 
The second use case is to allow dynamic specialization of heterogeneous systems for 
their operating environment. Some types of embedded heterogeneous systems can be 
deployed in a wide range of environments with various conditions. When their 
operation depends on these conditions, developers of programs for such systems must 
anticipate in the code all possible conditions. It may be implemented through constant 
monitoring of the environment. Another alternative is on-place configuration or 
tuning of each particular system. However, it may not be possible due to nature of the 
task or too often or rapid (for manual operating) changes of the environment. Another 
variation of dynamic specialization scenario is a runtime configuration for specific 
peripheral devices (e.g. different models of sensors and actuators). 
Our library can help there in the case of sufficiently slowly changing environment 
(relative to a number of control cycles, when the time required for dynamic 
recompilation will pay off). It can be better shown on the specific example of PID 
controller tuning. Firstly, PID controller with tuning subpro gram is loaded on the 
peripheral microcontroller. Then, when optimal parameters are found, 
microcontroller program can be recompiled with these particular coefficients, thus 
yielding system that is maximally suited for its operating conditions. For the specific 
case of not changing environment this tuning and dynamic recompilation can be 
executed only once on deployment. This example is elaborated on in greater detail in 
the section Demonstration. 
The paper is organized as follows. The next section discusses similar works that are 
based on the similar ideas. The third section describes main architectural decisions 
and presents the architecture of the system. The fourth section is devoted to the DSL 
and provides a reader with a number of examples. The following section describes 
other parts of the system and their functionality in greater detail. The Approbation 
section describes test setups and the Demonstration section shows benefits of 
dynamic recompilation on a specific example and discusses scope and applicability 

                                                           
1https://github.com/gkirgizov/hetarch 
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of the library. The paper is closed with conclusion and discussion of possible 
directions of further work. 

2. Similar Work 
The difficulties, which heterogeneous systems cause, are not unique for the embedded 
software engineering. Programming of heterogeneous systems is an old problem, and 
there are several conceptual approaches to aforementioned difficulties. 
The most known area that faces it is programming with graphical processors. In this 
case, heterogeneous system consists of CPU and one or more GPUs. (The case of 
graphics programming, i.e. using shaders and graphics pipelines, is further from 
heterogeneous programming and is not considered here.) It is an old problem in this 
field: how to effectively and, not less importantly, conveniently use GPU in usual, 
CPU-centric programs? There are two main examples of systems that answer this 
question: Open Computing Language (OpenCL) [2] and CUDA framework from 
Nvidia [3]. Both these frameworks propose the use of C and C++ languages extended 
with special functions and attributes for writing device code (code to be executed on 
secondary processors). It can be written, depending on user’s aims and requirements, 
either in separate files or in the main program files together with usual C/C++ host 
code that is intended to be executed on CPU. OpenCL uses dynamic compilation (at 
runtime) of device code; some device vendors provide offline compilers for their 
devices (for example, Intel Code Builder for OpenCL API). CUDA similarly provides 
both possibilities: Nvidia has an offline compiler called NVCC and a runtime 
compilation library NVRTC. 
The motivation behind these examples and presented in this paper library is 
essentially the same: use of the same programming interface for all constituents of a 
heterogeneous system. 
Another area that this work touches is the ideas of generative, multi-stage 
programming and runtime code generation. A good discussion of general motivations 
and trade-offs behind these ideas, as well as examples of some actual realizations and 
a number of references provides [4]. 
Among their examples Delite—a heterogeneous parallel framework for domain-
specific languages [5], [6]—is of particular interest. Delite’s focus is on the 
performance of parallel heterogeneous systems, e.g. mixed CPU/GPU architectures 
and clusters. It is built on top of Lightweight Modular Staging (LMS) [7] system, that 
makes use of a form of metaprogramming to construct a symbolic representation of a 
DSL program. LMS provides a basis for DSLs embedded in Scala. On top of this 
layer, Delite is structured into a compiler framework and a runtime component. The 
framework provides primitives for parallel operations and generates Scala, CUDA or 
C++ code from DSLs. 
Although both we and the authors of Delite start from the same idea of multi-stage 
programming, our systems significantly differ in the approaches and application 
domains. Most importantly, we use dynamic code generation and thus employ the 
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generative programming at runtime to achieve dynamic optimizations. The authors of 
Delite, on the other hand, require static compilation of DSLs—they promote the use 
of additional compilation stage to perform domain-specific optimizations. 

3. High Level Description 
Further in the text by the word host is meant primary processor, by target—one of the 
peripheral processors or microcontrollers, by the user—developer who uses this 
library. 

3.1 Main Architectural Decisions 
The following decisions have shown themselves as reasonable and grounded and thus 
are inherited from the previous work [1]. They are discussed here to provide better 
context. 
Runtime changes in executable code on targets can be achieved by two approaches: 
dynamic compilation, which happens on the host, and code interpretation which 
happens on targets. Because modern interpreted languages generally have higher 
requirements and cause more overhead, the first decision is to use dynamic 
compilation on the more powerful host. 
The second decision is to use embedded domain specific language (DSL) as a basis 
for dynamic code generation. An alternative of using code attributes with compiler 
extension (e.g. as used by OpenCL) is less viable due to several reasons. First, code 
defined in a such way can be manipulated at the runtime only as a string of characters. 
It complicates analysis and dynamic code specialization, requiring additional step of 
semantic analysis before that, whereas DSL approach gives semantic information ’for 
free’. Second, it is more demanding to maintain the compiler extension to keep it up-
to-date with the needed compiler versions. In addition, it is still necessary to use 
dynamic compilation tools. It seems excessive to support both the compiler extension 
and the dynamic compilation tools. Moreover, it would restrict library users to only 
one compiler, which can be especially inconvenient in the world of embedded 
systems. 
LLVM [8] is used as a compilation backend. There is no real alternative, and its 
excellent design and convenience of use made this work possible. 
C++ is chosen as a language of implementation by several reasons: firstly, it is a 
natural choice for embedded systems domain; secondly, it allows to avoid overhead 
of interfacing with LLVM; and, most importantly, with template metaprogramming 
it provides the necessary expressive power for implementation of the DSL, which 
itself must be very expressive and general to be applicable in a wide range of use 
cases. Specifically, the latest C++17 standard is used. 
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Fig. 1. UML class diagram of the system. DSL class hierarchy is shown only approximately 
because of its breadth and dynamic nature. IRTranslator together with non-resident DSL 

constructs constitute independent and reusable DSL subsystem. 

3.2 Architecture Overview 
DSL allows the user to describe the code, which will be executed on targets. CodeGen 
module provides a simplified interface to LLVM compilation and optimization 
facilities. CodeLoader, Execution and Connection modules let user load code on 
targets, communicate with them (for example, using global variables) and control the 
code execution. Management of the target’s memory is provided by the host through 
MemoryManager module. 
Fig. 1 shows the structure of the system. 
This architecture has a benefit of simple extensibility. Each of the following parts of 
the library can be extended independently from others: 

 DSL constructs and operations (for example, support array slicing or 
exponentiation at the language level); 

 communication protocols; 

 target runtime functionality; 
 most importantly, target platforms. 

For details on these points, the reader can proceed to the following sections. 

4. DSL 

4.1 Design 
The core of this library is a powerful embedded C-like DSL. It is translated to LLVM 
Intermediate Representation (IR) to allow code compilation for a wide range of 
targets supported by LLVM. This design of the DSL as translated and compiled at 
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runtime is directly motivated by the concept of generative (or multi-stage) 
programming when the abstraction power of high-level languages is used to compose 
pieces of low-level code [4]. It makes runtime code generation and domain-specific 
optimization a fundamental part of the program logic. 
As authors of [4] note, the usual appeal of DSLs is in increasing productivity by 
providing a higher level, more intuitive programming model for domain experts, who 
are not necessarily expert programmers (”user-facing” DSLs). The other direction, 
which is of interest for us in this paper, is in using DSL as a means for exposing 
knowledge about high level program structures to a compiler. 
This DSL implementation makes heavy use of powerful template metaprogramming 
capabilities of C++, up to C++17 standard. The idea to leverage C++ templates to 
cope with challenges that poses development of DSLs aimed at generative 
programming goes back at least to the work of Czarnecki et al. [9]. 

4.2 Description and Examples 
DSL provides all necessary language constructs with a familiar syntax: 

• basic types (possibly cv-qualified): 

◦ arithmetic types; 

◦ pointers; 

◦ arrays of fixed length (possibly nested); 

◦ structs (possibly nested); 

• operations: 

◦ arithmetic operators (with the support of pointer arithmetic); 

◦ logical operators; 

◦ bitwise operators; 

◦ C-like cast; 

• control flow expressions: 

◦ sequential (comma operator expression); 

◦ conditional (if-else expression); 

◦ while loop; 

• functions (with a fixed number of arguments; no recursion); 

• literal values. 
It is also easily extensible with other higher-level constructs (for example, Python-
like array slicing) which will be translated directly to LLVM IR (i.e. will be efficient). 
To allow simpler organization of the language, every DSL construct models either 
value or expression; there are no statements. For example, to return void from a 
function user needs to use special DSL construct ’Unit’. Loops naturally return value 
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from their last cycle. If loop did not run it returns default-initialized value (generally, 
zero-initialized). 
Any DSL construct has a corresponding underlying C++ type, which determines 
allowed operations on it and conversions to other types. Underlying C++ type can be 
accessed through member type alias ::type which is present in every DSL type. And 
the DSL value type can be obtained (if there is one) from C++ type using to_dsl<T> 
type trait. In other words, there is a direct mapping between DSL types and C++ types. 
Type trait to_dsl<T> can be used as a convenient type factory. 
Type of the DSL constructs (real C++ type, not the underlying C++ type) encodes 
how it was constructed and what child DSL constructs constitute it (for example see 
listing 1). 

1. Var<int> x, y, z; 
2. auto expr = (x + y) * z; 
3. using expr_type = 
4.   EBinOp< Instruction::FMul, 
5.           EBinOp< Instruction::Add, 
6.                   Var<int>, 
7.                   Var<int> 
8.           >, 
9.           Var<int> 
10.   >; 

Listing 1. Type of some DSL expression 

One of the most interesting features of the DSL is a separation of DSL abstract syntax 
tree (AST) construction from DSL function instantiation. It is achieved through the 
use of C++14 generic lambdas which play a role of DSL code generators (AST 
builders). Example can be seen on the next listing. 

1. auto max_gen = [](auto x, auto y) { 
2.     return If(x > y, x, y); 
3. }; 
4. auto dsl_max = make_dsl_fun<int, int>(max_gen); 

It allows simple and effective reuse of needed DSL constructs, as in the next example. 
1. auto max3_gen = [&](auto x1, auto x2, auto x3) { 
2.     return max_gen(x1, max_gen(x2, x3)); 
3. }; 
4. auto dsl_max3 = make_dsl_fun<int, int, int>(max3_gen); 

This conceptually differs from simple function call as a means of code reuse and is 
closer to function inlining. In this way the new DSL generator is constructed which, 
in its turn, can be later reused. Moreover, on the point of DSL code generation user 
can utilize C++ constructs to build more complex DSL expressions (Listing 2). 

1. // note: accepts arbitrary DSL expressions 
2. auto reduce_sum_gen = [](auto ...xs) { 
3.     // Using C++17 fold expression 
4.     return (... + xs); 
5. }; 
6. auto sum3 = make_dsl_fun<float, double, int>(reduce_sum_gen); 

Listing 2. Use C++ code to build complex DSL expressions. 
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1. // note: accepts arbitrary DSL expressions 
2. //  (e.g. other generators) 
3. auto get_reducer = [](const auto& binary_op) { 
4.     return [&](auto x1, auto... xs) { 
5.         // Using C++17 fold expression 
6.         return ( (x1 = binary_op(x1, xs)), ... ); 
7.         // Redundant assignments 
8.         //  will be optimized out by LLVM 
9.     }; 
10. }; 
11. auto max_vararg_gen = get_reducer(max_gen); 
12. auto max3 = make_dsl_fun<int, int, int>(max_vararg_gen); 

Listing 3. Generator of DSL reduce function over arbitrary DSL expressions. 

Listing 4 shows two noticeable syntactic features of the DSL: the sequential operator 
that plays a role of C/C++ semicolon and DSL local variables. Generally, any DSL 
variable which is not an argument of DSL generator (enclosing lambda) will be 
considered a local one. For the more consistent syntax user can define local variables 
inside the generator lambdas. Also, note that they can’t be defined inside the DSL 
expressions because they follow the rules of C++ expressions. To use global variables 
a user is required to first load them on the target because they are translated to LLVM 
IR as actual memory addresses. 

1. Var<int> local1; 
2.  // note lambda capture (can also be [&]) 
3. auto max_gen = [=](auto arg) { 
4.     Var<int> local2; 
5.     return ( 
6.         // variables can't be defined here! 
7.         local1 += arg, 
8.         local1 += local2, 
9.         arg // last expression is returned 
10.     ); 
11. }; 

Listing 4. Use of comma operator and local variables. 

The next listing demonstrates that DSL allows to construct complex expressions in 
familiar, close to C, syntax. 

1. auto complex_expr = [](Ptr<Var<uint32_t>> ptr) { 
2.     Var<uint32_t> tmp; 
3.     return tmp = *ptr &= ~(*++ptr ^ Lit(1 << 8)); 
4. }; 

Generic DSL functions is another very useful feature. As can be seen from previous 
examples, DSL generators are not bound to specific types of parameters. Instead of 
explicit manual instantiation of DSL function with required types of parameters 
library user can instantiate generic DSL function with a help of function factory. If 
generic function is used with arguments of inappropriate types, compiler will catch 
this and compilation will fail with comprehensible error message. 
Instantiated generic functions are stored in a function repository by a key which 
represents their type. As a type of DSL constructs encodes their AST, type of DSL 
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functions encodes their body. Thus, the structural equivalence between functions is 
achieved without any overhead. Thanks to this repeated instantiation of the 
(structurally) same DSL functions is avoided. DSL function is deleted from the 
repository at the end of translation to LLVM IR. Needless to say, all this happens 
behind the scenes and a user isn’t required to know about these details. 
Listing 5 shows an example of the use of a generic DSL function. 

1. auto generic_max = make_generic_dsl_fun(max_gen); 
2.  
3. auto max4_gen = [&](auto x1, auto x2, auto x3, auto x4) { 
4.     return generic_max( 
5.             generic_max(x1, x2), 
6.             Cast<float>(generic_max(x3, x4)) 
7.     ); 
8. }; 
9. // This will cause instantiation of 2 max functions: 
10. //  for ints and for floats 
11. auto max4 = make_dsl_fun<float, float, int, int>(max4_gen); 

Listing 5. Generic DSL function example 

Last, but not the least, DSL is designed with usability in mind. C++ code with a heavy 
use of templates is known for its complex error message on compilation failure. In 
DSL all major type constraints are checked with static assert standard library function 
which produces comprehensible compile time error messages. 

5. Subsystems Description 

5.1 MemoryManager 
This centralized memory management organization allows to free less powerful 
targets from extra tasks and avoid extra communication cycles which would be 
inevitable to ensure correct memory allocation if targets managed their memory 
themselves. Best-fit, worst-fit and first-fit memory management algorithms are 
implemented. Conceptually MemoryManager is part of a CodeLoader and used only 
for data and code loading. That is, it’s important to note that target code can’t 
dynamically allocate memory on targets. 

5.2 CodeLoader 
With the help of CodeLoader module user can load DSL global variables and 
compiled code on targets. CodeLoader also allows getting a handle to already loaded 
variables and functions. In this case, no checks or memory allocation is performed, 
because, in general, there is no possibility to ensure correctness of user’s actions. For 
example, functions can be loaded on a target in a persistent memory in one program 
run, and on another program run any knowledge about it will be lost, whereas the user 
may want to access previously loaded data and functions. So, it is assumed that user 
knows what he is doing. 
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5.3 Connection Module: Host side 
Connection module consists of two parts: command protocol for communication 
between host and targets and underlying connection implementation. The 
functionality of the former is fully built on the primitives of the latter, which must 
provide synchronous read and write operations. 
The core command protocol includes the following commands: 

• echo (for testing); 

• read specified number of bytes at a specified address; 

• write data to a specified address; 

• call function at the specified address (without arguments and return value); 

• set function at the specified address on execution by the timer; 

• set function at the specified address on execution on the specific interrupt. 
This abstraction from specific implementation allows easier extensibility on new 
connection protocols. This work implements connection through TCP and through 
USB (used as a virtual serial port). 

5.4 Connection Module: Target Runtime API 
Each specific target platform requires its own firmware to interface with the host. It 
must provide functionality for communicating with the host and answering to requests 
according to the command protocol. 
At this point an important consideration arises: targets must provide API sufficient 
for a wide range of tasks. Generally, peripheral devices on microcontrollers are 
memory mapped, which means that runtime API consisting of memory read and write 
functions can be sufficient. For example, the family of STM32 microcontrollers has 
fixed memory map and each device has a specific predefined address in memory. 
Some platforms may need an extended API. When the target has an operating system, 
in particular Linux, it can additionally provide an interface to some of the system 
calls: open() for using devices represented as input/output ports and mmap() for 
correct work with library runtime process address space. It is implemented in the 
LinuxConnection module. Although for this platform it is also possible to implement 
an interface to arbitrary system calls and libraries using dlopen() and dlsym() 
functionality, the library runtime API for Linux is intentionally left minimal but 
sufficient for tasks concerned with controlling peripheral devices. 
Another important question is a debugging interface. Issuing diagnostic messages to 
some local to target buffer can accomodate most of the needs and at the same time is 
easily implementable. Target must provide interface to read the buffer and to get an 
address of the target local logging function. This address is used to construct the DSL 
wrapper for remote logging function. From this point it can be further used in the DSL 
code. 
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6. Approbation 
The system was tested on several setups: 

 Linux on x86 plays the role of both host and target machines, communication 
is through TCP connection (setup for tests during development); 

 the host is Linux x86, the target is Odroid XU4 (armv7a) with Linux, TCP 
connection; 

 the host is Linux x86, the target is bare-bones stm32f429i-discovery 
microcontroller (armv7em), USB Virtual COM Port connection; 

 the host is Odroid XU4 (armv7a) with Linux, the target is bare-bones 
stm32f429i-discovery (armv7em), connection through USB Virtual COM 
Port. 

Tests were performed for each command from the command protocol (see above in 
the section 5.3). 

7. Demonstration 
For a demonstration of dynamic optimization possibilities, which this library opens, 
the reader can refer to the following listings of PID control (listing 6) and its tuning 
(listing 7) for specific conditions of the deployment environment. 

1. using namespace hetarch; 
2. using namespace hetarch::dsl; 
3.  
4. typedef int32_t ctrl_t; // for control variables 
5. typedef float coef_t; // for coefficients 
6.  
7. // Example of the target 
8. typedef uint32_t addr_t; // size_t of the target 
9. conn::SerialConnImpl<addr_t> conn{"/dev/ttyACM0"}; 
10. SimplePipeline<addr_t> pipeline{"armv7e_linux_eabihf", conn}; 
11.  
12. // Global var-s to store error data between control cycles 
13. auto perr = pipeline.load(Global{ Var<ctrl_t>{0} }); 
14. auto ierr = pipeline.load(Global{ Var<ctrl_t>{0} }); 
15.  
16. // dt -- control cycle durations (in seconds) 
17. // sp -- setpoint 
18. auto pid_gen = [&](auto Kp,auto Ki,auto Kd,auto dt,auto sp) { 
19.   auto pid_ctrl = [&]{ 
20.     // Local variables: 
21.     // pv -- process variable 
22.     // cv -- control variable 
23.     Var<ctrl_t> pv, cv, prev_perr, derr; 
24.  
25.     // read_pv and write_cv are some dsl generators 
26.     //  that perform actual input/output 
27.     return ( 
28.       pv = read_pv(), 
29.  
30.       prev_perr = perr, 
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31.       perr = sp - pv, 
32.       ierr += perr, 
33.       derr = perr - prev_perr, 
34.       cv = Kp*perr + Kd*derr/dt + Ki*ierr*dt; 
35.  
36.       write_cv(cv) 
37.     ); 
38.   }; 
39.   return pid_ctrl; 
40. }; 

Listing 6. PID controller DSL code. 

1. auto tuner = [&](auto dt, auto sp){ 
2.   // For tuning coefficients are usual mutable DSL variables 
3.   Var<coef_t> Kp{0}, Ki{0}, Kd{0}; 
4.   auto pid_ctrl = pid_gen(Kp, Ki, Kd, dt, sp); 
5.  
6.   // Specific tuning method: 
7.   //  determines current operating conditions 
8.   //  (e.g. by reading some sensors) 
9.   //  and returns tuning data that allows to compute 
10.   //  optimal PID controller coefficients. 
11.   // E.g. for Ziegler-Nichols method it is 
12.   //  Ku -- "ultimate gain" and Tu -- oscillation period 
13.   return (/* actual tuning code goes here */); 
14. }; 
15.  
16. // Example parameters 
17. Lit sp{42}; // Setpoint 
18. int ms_delay{100}; // Control cycle duration 
19. Lit dt{ms_delay / 1000.0}; 
20.  
21. auto tuning_code = make_dsl_fun(tuner, dt, sp); 
22. // Translate, compile and load tuning code 
23. auto tuning_fun = pipeline.load(tuning_code); 
24. // Run tuning code and get tuning data 
25. auto tuning_data = exec.call(tuning_fun, dt, sp); 
26. // Compute coefficients using optimal tuning data 
27. auto [Kp, Ki, Kd] = compute_coefs(tuning_data); 
28.  
29. // Generate optimal PID controller 
30. auto opt_pid_gen = pid_gen(Kp, Ki, Kd, dt, sp); 
31. auto opt_pid_code = make_dsl_fun(opt_pid_gen); 
32. // Translate, compile and load optimal PID controller 
33. auto opt_pid = pipeline.load(opt_pid_dsl); 
34.  
35. // Finally, run PID controller on timer 
36. pipeline.schedule(opt_pid.callAddr, ms_delay); 

Listing 7. PID tuning DSL code. 

The work is organized in the following way: 
 in the first phase host loads general version of the PID controller with tuning 

code on the target; 
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 in the second phase tuning code is called and its result is read by host; 
 in the third phase host computes coefficients based on tuning data and 

recompiles PID controller with them; 

 finally, host loads PID controller optimized for specific coefficients. 
This example shows two advantages of using the library. Firstly, tuning code is 
completely absent from the final program running on the target. Dynamic code 
generation allows compiling code for specific constant coefficients to achieve better 
execution times and smaller program size. 
Secondly, the dynamically generated code can be more optimal due to optimizations 
performed by LLVM. When coefficients are integer values, or, even better, integer 
powers of two (or float values, that can be rounded without big errors), resulting code 
will be generated with fewer (or completely without) expensive floating operations. 

1. typedef int ctrl_t; 
2. typedef float coef_t; 
3.  
4. extern coef_t Kp, Kd, Ki; 
5. ctrl_t perr = 0, ierr = 0; 
6.  
7. ctrl_t pid_ctrl(float dt, ctrl_t sp, ctrl_t pv) { 
8.   ctrl_t prev_perr = perr; 
9.   perr = sp - pv; 
10.   ierr += perr; 
11.   ctrl_t derr = perr — prev_perr; 
12.  
13.   return Kp*perr + (Kd*derr/dt) + (Ki*ierr*dt); 
14. } 

Listing 8. PID controller C code used for LLVM IR comparison. 

To emphasize possible dynamic optimizations, fig. 2 presents a comparison between 
listings of the PID controller code for two cases: 

• C code from listing 8 compiled with clang without this library; 

• DSL code from listing 6 dynamically optimized with this library. 
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1. ; Kp * perr 
2. %9 = load float, float* @Kp 
3. %10 = sitofp i32 %perr to float 
4. %11 = fmul float %9, %10 
5.  
6. ; Kd * derr / dt 
7. %12 = load float, float* @Kd 
8. %13 = sitofp i32 %derr to float 
9. %14 = fmul float %12, %13 
10. %15 = fdiv float %14, %dt 
11.  
12. %16 = fadd float %11, %15 
13.  
14. ; Ki * ierr * dt 
15. %17 = load float, float* @Ki 
16. %18 = sitofp i32 %ierr to float 
17. %19 = fmul float %17, %18 
18. %20 = fmul float %19, %dt 
19.  
20. %21 = fadd float %16, %20 

1.  
2.  
3. ; Kp * perr 
4. %12 = shl i32 %perr, 2 
5. %13 = sitofp i32 %12 to float 
6.  
7. ; Kd * derr / dt 
8. %14 = sitofp i32 %derr to float 
9. %15 = fmul float %14, 5.000000e-01 
10. %16 = fdiv float %15, 1.000000e-01 
11.  
12. %17 = fadd float %16, %13 
13.  
14.  
15. ; Ki * ierr * dt 
16. %18 = mul i32 %ierr, 6 
17. %19 = sitofp i32 %18 to float 
18. %20 = fmul float %19, 1.000000e-01 
19.  
20. %21 = fadd float %20, %17 

Fig. 2. Comparison of LLVM IR generated for expression "Kp*perr + (Kd*derr/dt) + 
(Ki*ierr*dt)" (core part of the PID controller code; other lines are omitted here). 

Compiler options used: -O2 -target x86_64-pc-linux-gnu. LLVM IR is used instead of 
native assembler because it is more readable and optimizations are done on the IR. 

Left: compiled with clang from C code on list. 8. LLVM IR is presented only for the last line. 
Right: compiled with LLVM from DSL (see list. 6). For the sake of demonstration it is 
assumed that dynamically determined PID controller coefficients are  Kp=4, Kd=6, 

Ki=0.5; and control cycle duration is dt=0.1. 

There are several things on the fig. 2 to note: 

• dynamically generated code has fewer memory accesses because it is 
compiled for specific values (note lines 2, 7, 15 where usual code loads 
coefficients stored as global variables); 

• instead of floating-point multiplications (lines 4 and 17 on the left) integer 
shift (line 4, right) and integer multiplication (line 16, right) are used; 

• one apparent to a programmer optimization on line 9, right is missed: 
substitute multiplication by 0.5 with integer division by 2 or right shift by 
one; and it should be2, although it is possible to implement such 
optimizations on the DSL level. 

7.1 Library Applicability 
The library is intended for use with embedded heterogeneous systems of a small scale 
with low-power secondary processors and microcontrollers that run heterogeneous 
tasks. The case of homogeneous tasks on the more powerful systems is better 
accomodated with existing tools (e.g. OpenCL or Delite) that are specifically aimed 

                                                           
2This compiler behavior is expected according to C11 standard (section F9.2.1), because 
representations of 0.5 and 2 maybe not be equivalent and the result can be different on some 
machines. 
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at scheduling and parallelizing the computations across bigger number of secondary 
processors. This library is not intended for such use cases and doesn’t provide any 
orchestration for parallel tasks. Each secondary processor should be managed 
manually and separately. 
Generally, the benefits and applicability of the library should be considered in each 
particular case. As noted in the introduction, the library is well suited for the problems 
when the dynamic configuration of the system is required (either for particular 
environment conditions or for different peripheral devices and sensors). It’s also 
important to consider the price of dynamic recompilation: the benefits of the 
specialized and optimized code should amortize the compilation price. 

8. Conclusion 
This work presented a powerful DSL language aimed at metaprogramming and 
showed its application to the domain of heterogeneous embedded systems. Although 
the library misses some features (as noted in Further Work section), it constitutes a 
proof of concept that the idea of dynamic code generation is perspective and useful 
in the real-world scenarios 

9. Further Work 
The work can be continued in several directions. 
The library does not provide facilities for loading on the targets existing compiled 
code, for example, libraries. To be applicable to a wider range of use cases it requires 
support of this functionality. 
The development of the DSL is another direction. It can be extended with additional 
language constructs, for example, switch, goto or to support recursion. It can also be 
further developed to include more features of functional programming languages, e.g. 
functions as first-class citizens. Support for a debugging in terms of the DSL 
(breakpoints, tracing) can also be added. 
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Аннотация. Встраиваемые системы с гетерогенной архитектурой, рассматриваемые в 
данной работе, состоят из одного управляющего и одного или нескольких 
периферийных процессоров. Разработка ПО для таких систем представляет заметные 
сложности, требуя различные наборы инструментов для каждой составляющей 
гетерогенной системы. Достижение высокой эффективности также становится более 
сложной задачей. Кроме того, во многих сценариях встраиваемые системы требуют 
настройки во время исполнения, что непросто обеспечить с использованием 
стандартных средств. Эта работа представляет C-подобный предметно-
ориентированный язык (DSL) для метапрограммирования и библиотеку, 
предоставляющую единый интерфейс для программирования периферийных 
процессоров с использованием этого языка. Это позволяет разрешить упомянутые 
проблемы. DSL встроен в C++ и позволяет свободно манипулировать написанными на 
нем выражениями и, таким образом, представляет собой реализацию идеи 
генеративного программирования, когда выразительная мощь высокоуровневого языка 
используется для многоступенчатой генерации низкоуровневого DSL кода. Вместе с 
другими возможностями, например, обобщенными DSL функциями, это делает данный 
язык гибким инструментом для динамической кодогенерации. Подход, используемый в 
библиотеке, — это динамическая компиляция. Код, написанный на предметно-
ориентированном языке, транслируется в LLVM IR и затем компилируется в машинный 
код во время исполнения. Это открывает возможность динамических оптимизаций кода, 
например, специализации функций для определенных значений, известных только во 
время исполнения. Гибкая архитектура библиотеки обеспечивает простую 
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расширяемость на любые платформы, поддерживаемые LLVM. В конце работы также 
приводятся апробация библиотеки на нескольких системах и демонстрация 
возможности динамических оптимизаций. 

Ключевые слова: метапрограммирование; кодогенерация; встроенный DSL; 
гетерогенные системы; встроенные системы. 
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