
7

Tolerant parsing with a special kind of
«Any» symbol: the algorithm and practical

application

A.V. Goloveshkin <alexeyvale@gmail.com>
S.S. Mikhalkovich <miks@sfedu.ru>

I.I. Vorovich Institute for Mathematics, Mechanics and Computer Science,
Southern Federal University,

8a, Milchakova st., Rostov-on-Don, 344090, Russia

Abstract. Tolerant parsing is a form of syntax analysis aimed at capturing the structure of
certain points of interest presented in a source code. While these points should be well-
described in the corresponding language grammar, other parts of the program are allowed to
be not presented in the grammar or to be described coarse-grained, thereby parser remains
tolerant to the possible inconsistencies in the irrelevant area. Island grammars are one of the
basic tolerant parsing techniques. “Island” is used as the relevant code alias, while the irrelevant
code is called “water”. In the paper, a modified LL(1) parsing algorithm with built-in “Any”
symbol processing is described. The “Any” symbol matches implicitly defined token
sequences. The use of the algorithm for island grammars allows one to reduce irrelevant code
description as well as to simplify patterns for relevant code matching. Our “Any”
implementation is more accurate and less restrictive in comparison with the closest analogues
implemented in Coco/R and LightParse parser generators. It also has potentially lower
overhead than the “bounded seas” concept implemented in PetitParser. As shown in the
experimental section, the tolerant parser generated by the C# island grammar is proven to be
applicable for large-scale software projects analysis.

Keywords: tolerant parsing; robust parsing; lightweight parsing; partial parsing; island
grammar; parser generation

DOI: 10.15514/ISPRAS-2018-30(4)-1

For citation: Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of
“Any” symbol: the algorithm and practical application. Trudy ISP RAN/Proc. ISP RAS, vol.
30, issue 4, 2018. pp. 7-28. DOI: 10.15514/ISPRAS-2018-30(4)-1

1. Introduction
Tolerant parsing is a parsing technique differing from the detailed whole-language
(so-called baseline) parsing needed to build a full-featured compiler for a certain
programming language. The main feature of the approach is the ability to capture
points of interest inside the program, while all the code that does not contain such
points can be skipped with no or minimal analysis performed. From developer’s

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

8

perspective, this feature allows her to focus on the structure of the points of interest,
providing a minimal description of the irrelevant area. Tolerant parsing is usually
called lightweight because tolerant grammar tends to be much shorter than the
baseline one.
There are several reasons for the tolerant parsing to be the most suitable option for
the program analysis

 Language embedding: Some program artifacts assume the usage of
multiple languages in one source file. In yacc-like grammars describing the
syntax-directed translation, actions performed on a parsing step are
expressed in terms of a certain general-purpose language. This means that
the parser developed to capture the grammar structure must be tolerant to all
the possible variations of these language snippets. A possible application of
a tolerant grammar parser is described in [1]. A detailed description of the
embedded language tolerant parsing is given in [2].

 Full grammar inaccessibility: Tolerant grammar imprints the developer’s
notion of what places inside the program are the most important in the
context of the current task. Its structure and the mapping between the
grammar entities and the language constructs are transparent to the
programmer from the very beginning and can be further refined in
accordance with the in-the-wild testing results. On the contrary, the baseline
grammar usage requires a prior exploration and comprehension. This process
is proved to be time-consuming [3] and can be impossible due to proprietary
issues or manual baseline parser writing [4].

 Domain-specific idioms: In a certain project, some local domain-specific
patterns can be applied [4]. They represent a high-level abstraction layer
which is not presented in the language syntax and obviously is out of scope
of the whole-language parser. Nevertheless, tolerant parsers can be strictly
focused at these patterns, ignoring the underlying structure that allows one,
in particular, to perform the impact analysis [5].

 Incorrect program processing: Syntax errors can be handled by the whole-
language parser with some sophisticated error recovery mechanisms [6, 7].
These mechanisms are heuristic by the nature and do not guarantee the
successful parsing resumption, as well as the preservation of the built parts
of the parse tree. Tolerant parser is able to skip irrelevant error-containing
areas. At the same time, tolerant parsing can be broken by the mismatch of
the elements structuring the program (e.g. by the absence of a block closing
bracket in C#). Specific error handling techniques allowing recovering from
this category of errors are described for the bridge grammars [8, 9], a special
kind of the island grammars.

The contributions of this paper are: 1) a modification of the standard LL(1) parsing
algorithm aimed at island grammars tolerant parsing paradigm and designed to
simplify irrelevant code skipping by means of a special Any symbol, this symbol is

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

9

used in a tolerant grammar to mark an irrelevant code without specifying its structure;
2) a compiler generator with a built-in tolerant grammar description language
containing Any as a part of the standard syntax; 3) a lightweight grammar of the C#
programming language for this generator; 4) an experimental evidence of the
applicability of the generated tolerant C# parser for large-scale software projects
analysis.
The remainder of the paper is organized as follows: a brief overview of the existing
tolerant parsing techniques is provided in Section 2, in Section 3 the main goals of
the current research are listed, in Section 4 we discuss related work and outline
limitations of the closest analogues of our approach, in Section 5 the modification of
the standard LL(1) parsing algorithm aimed at Any symbol processing is introduced.
The tolerant grammar for the C# programming language is presented in Section 6,
this section also includes a sufficient volume of experimental data obtained by
applying the generated tolerant parser to a real-world software source code. In Section
7 a summary of the theoretical and practical contribution of the paper is provided.

2. Tolerant parsing techniques
Three basic tolerant parsing techniques considered in [2, 4, 5, 10–13] are fuzzy
parsing, island grammars and skeleton grammars.
Fuzzy parsing is based on the notion of anchors, specific tokens that mark the
beginning of the constructs of interest. The formal definition of a fuzzy parser is
provided in [10, 11]. The grammar used by the fuzzy parser actually consists of a
number of smaller grammars. Each of them has its own start symbol with a production
rule starting with the anchor. The main concern of the fuzzy parsing technique is that
parsing process is tightly coupled with anchor tokens and can be error-prone in case
these tokens appear outside of the points of interest.
Skeleton grammar construction is described in [12]. The skeleton grammar partially
shares its structure with the baseline grammar. Rules describing points of interest are
complemented with baseline grammar rules needed to derive those points from the
start symbol (this process is called root completion). After the root completion,
special default productions are formulated for all the undefined nonterminal symbols
appearing in the rules added. The key precondition making this process possible is
the baseline grammar accessibility. As noticed in Section 1, most often this is not the
case, besides, baseline grammar comprehension is quite time-consuming and requires
some additional effort.
Island grammars technique is in the focus of our research. We believe that the concept
of an island grammar is not well-known, so we provide its formal definition in
accordance to [4, 5], despite the fact that this definition is not further referenced.
Definition 1. Given a context-free grammar 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆), where 𝑁 is a set of
nonterminal symbols, 𝑇 is a set of terminal symbols, 𝑃 is a set of production rules,
𝑆 ∈ 𝑁 is a specified start symbol, and a set of constructs of interest 𝐼 ⊂ 𝑇∗ such that

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

10

∀𝑖 ∈ 𝐼, ∃𝜔ଵ, 𝜔ଶ ∈ 𝑇∗: 𝜔ଵ𝑖𝜔ଶ ∈ 𝐿(𝐺), where 𝐿(𝐺) denotes the language generated by
𝐺. An island grammar 𝐺ூ = (𝑁ᇱ, 𝑇ᇱ, 𝑃ᇱ, 𝑆ᇱ) for 𝐿(𝐺) has the following properties:

1) 𝐿(𝐺) ⊂ 𝐿(𝐺ூ);

2) ∀𝑖 ∈ 𝐼, ∃𝑛 ∈ 𝑁ᇱ: 𝑛
∗

⇒ 𝑖 and ∃𝜔ଵ, 𝜔ଶ ∈ 𝑇∗: 𝜔ଵ𝑖𝜔ଶ ∉ 𝐿(𝐺) ∧ 𝜔ଵ𝑖𝜔ଶ ∈ 𝐿(𝐺ூ);
3) 𝐾(𝐺) > 𝐾(𝐺ூ).

The first property means that 𝐺ூ generates an extension of 𝐿(𝐺), the second means
that the syntax analyzer for 𝐺ூ recognizes constructs of interest from 𝐼 in at least one
sentence that is not recognized by the parser for 𝐺. The third property introduces the
function 𝐾(𝐺) denoting the grammar complexity.
Informally speaking, island grammar consists of detailed productions describing
certain constructs of interest (the islands) and liberal productions that catch the
remainder (the water). Island productions form a set of patterns to be matched by the
points of interest. However, patterns are not enough to overcome two important island
grammars side effects called false positives and false negatives [12]. In case relevant
code snippets look similar to the irrelevant ones, they can be confused by the parser,
as a result, the irrelevant code will be recognized as the point of interest and some
points of interest will be missed, there also can be a parse error. To minimize the
mismatch, iterative refinement is needed for patterns as well as for anti-patterns
matching irrelevant code.
To reduce the need for anti-patterns description and refinement, indeterministic
parsing techniques are usually used. GLR [14, pp. 381–391] and GLL [15] parsers
are capable to apply multiple parse actions for the same token in case of an ambiguity
and continue parsing the program in all ways. However, they have a number of
disadvantages: indeterministic parsing is hard to trace and debug, may return multiple
parse trees that need some extra processing, and in case the islands look similar to the
water, a parsing result can be extremely unpredictable. From the latter it follows that
one still has to describe and refine some anti-patterns.

3. Problem statement
The key assumption of the current research is that tolerant parsing can be performed
with a deterministic algorithm, while patterns and anti-patterns forming the tolerant
grammar can be simplified and partially eliminated by making the algorithm capable
to match and skip some token sequences which have no explicit definition in the
grammar.
The key goals of the current research are:

1) to design an LL(1) parsing algorithm with built-in notion of a special Any
grammar symbol that provides skipping of the token sequences that are not
explicitly described in the grammar;

2) to develop a compiler generator with an integrated language for LL(1)
grammars writing, supporting Any symbol usage and automatic syntax tree
construction;

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

11

3) to implement a tolerant island grammar for the C# programming language in
the format supported by the generator below; the grammar is supposed to
contain water anti-patterns simplified with Any symbol;

4) to test parser’s applicability to the analysis of large-scale software projects.
The developed tool is planned to be used for lightweight parsing of software projects
and their further sustainable concern-based markup.

4. Related work

4.1 Coco/R
The first tool with embedded capability to match tokens from sets which are not
directly specified in a grammar is the Coco/R recursive-descent parsers generator.
According to the documentation [16, p. 14], a special symbol ANY, which denotes
any token that is not an alternative to that ANY symbol in the current production, is
predefined in generated parsers. For a given grammar, an individual set of admissible
tokens is connected with each ANY entry. Initially all the sets consist of all the tokens
defined in the grammar, then at the parser generation stage the alternatives of ANY
symbols are removed from the corresponding sets to make the situation when a parser
has to make a choice between ANY and some explicitly specified token
unambiguously solvable in favor of the explicit option. Further we will call these
alternatives rivals, in order to avoid terminological confusion with alternatives
forming grammar rules.
The major shortcoming of ANY implementation in Coco/R is that the intuitive
principle of the explicitly specified token priority is both incomplete and excessively
restrictive. As a result, there are grammars for which parsers generated by Coco/R do
not parse some programs valid from the developer’s point of view. Some examples
of such Coco/R grammars are shown in fig. 1. Lower case is used for terminal
symbols, {} denotes zero or more repetitions of bracketed elements.

Excessive restrictiveness manifests itself for the iteration {ANY}, for which the same
set defines admissible tokens both for the first position in the sequence corresponding
to {ANY} and for the rest positions. For the grammar in Fig. 1a, the set {b, c}
corresponds to ANY. The token d is excluded from the set to make parser capable to
finish {ANY} matching and match d explicitly. The token a is also excluded, that
makes all the strings starting from a being matched by the first alternative with
explicitly written a token in the beginning. However, the latter exclusion leads to the
fact that the string bad$ is not recognized by the parser. Note that the first token of
the input — token b — is enough to choose the right production for A nonterminal,
and the next a token cannot be treated as the beginning of the first alternative. If
separate sets were used for ANYs from the iteration, a could be added to the set of
admissible tokens for the second and subsequent positions in {ANY}, and this would
not lead to an ambiguity.

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

12

The lack of outer context analysis for nonterminal symbols leads to incompleteness
of the constraints that are imposed on the ANY admissible tokens set. In Fig. 1b, ANY
has no rivals within the rule, so the set of admissible elements consists of all the tokens
defined in the grammar. As a result, the generated parser is not capable to recognize
the intuitively recognizable string abcd$. Once {ANY} processing starts, the parser
reaches the end of the input stream treating each token as a part of the sequence
corresponding to {ANY}. Outer context analysis for nonterminal B shows that token
d is in FOLLOW(𝐵), so it may appear after ANY iteration. Hence d must be deleted
from admissible tokens set and be matched explicitly.

Fig. 1. The grammars illustrating ANY implementation shortcomings in Coco/R.

At the same time, static analysis of the outer context is too coarse to be a good
solution. For the grammar in Fig. 1b, B appears in two different contexts and the
restriction derived from the first context (B d alternative) is not relevant for the
second one (b B alternative). In the second context, ANY has no inner or outer rivals.
With statically defined admissible tokens set, two contexts are mixed and string bad$
is not recognizable again. On the other hand, after choosing an alternative for A, the
more precise information about what can follow {ANY} is available. That is, with
dynamic decision making at the parsing stage, the set of programs recognizable by
the parser can be extended.
In the current paper, the symbol Any is described. Unlike the ANY symbol in Coco/R,
it corresponds to the sequence of zero or more tokens, not a single token. In its
implementation, all the shortcomings listed above are eliminated and the decision
about the current token’s admissibility at Any position is made at the parsing stage.

4.2 LightParse
The tool for lightweight LALR(1) parsers development called LightParse [17] also
supports the use of Coco/R-like Any symbol. LightParse application is similar to what
we plan to do: generated lightweight parsers are used for concern-oriented source
code markup [18]. LightParse performs static construction of the sets of tokens
allowed at Any position and inherits all the Coco/R ANY implementation limitations.
Besides, LightParse grammar is not directly used to generate the parser. Instead, it is
translated to the YACC-like format supported by the standard LALR(1) parser
generator GPPG, then GPPG produces the parser. In the translated grammar, every
entry of Any symbol is presented as a nonterminal symbol with single-element
alternatives, by an alternative for each of the admissible terminal symbols. To get the
valid YACC-like grammar without the nonterminal outer context analysis, LightParse
imposes additional restrictions on Any usage: this symbol is not permitted to be in
the end of the alternative, except for the start symbol productions. The presence of

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

13

the intermediate grammar processing stage leads to inconsistency between the source
grammar vocabulary, which is used by the grammar developer too, and the terms used
in messages issued by the GPPG generator when some parser generation errors
appear. Our Any implementation does not assume additional grammar adaptations
for making the grammar suitable for the standard parsing algorithm. Instead, the
standard LL(1) algorithm is modified to integrate the notion of Any and make it
possible to define admissible tokens dynamically at the parsing stage. This eliminates
the limitations of LightParse Any symbol.

4.3 Bounded seas
In [19], an extension of the regular parsing algorithm is described for parsing
expression grammars (PEG). It is intended to automatically deduce anti-patterns for
water which is supposed to be context-aware, i.e., specific for each particular island
in the input. This approach named bounded seas is integrated in PetitParser tool which
allows one to implement PEG-based parsers. Bounded seas are intended to
completely eliminate the need for water rules explicit description in island grammars.
A rule element of the form ~island~ is treated as a triple before-water
island after-water. The key property of the water is that it never consumes
any input from the right context of the bounded sea. The right context can be derived
statically from the grammar or dynamically from the parser state. For the after-
water entity, right context is set with an expression consisting of all the possible
expressions that can directly follow after-water, separated with the ordered
choice operator. Right context for the before-water consists of the island
expression itself and the corresponding after-water boundary expression which
both are ordered choice operands. Water expression succeeds when the corresponding
right boundary expression succeeds.
Checking all the possible boundaries assumes backtracking, which leads to a
sufficient time overhead. Since backtracking is a basic technique for PEG due to
ordered choice operator presence, it is usually optimized with packrat parsing [20],
which makes parsing time linearly dependent on the length of the program. Similar
technique is used to eliminate potentially exponential complexity of bounded seas
analysis. However, execution time decrease is achieved at the cost of a significant
increase in the amount of memory used. Despite the right context exploration
complexity, bounded seas are not able to make a globally correct decision on when
water skipping should be ended. It is outlined in [19] that expressions forming the sea
boundary actually recognize only prefixes of the possible boundaries, and boundaries
form an LL(𝑘) language where 𝑘 depends on the particular situation. So, being
designed to eliminate the need for anti-patterns presence in a grammar, bounded seas,
however, do not guarantee successful distinguishing islands from water without any
explicit hints about the water content.

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

14

Besides, PetitParser itself is Smalltalk-based1 and is intended for use in a closed
ecosystem of Pharo virtual machine and Moose framework, so generated parsers have
extremely low integrability into an arbitrary project.
The approach presented in the current paper has less overhead because it does not use
backtracking at all. It performs a linear input processing and use the modified FIRST
set building algorithm to find a boundary for Any. Though in [19] standard FIRST
and FOLLOW sets from LL(1) parsing theory are named insufficient to recognize the
boundary, it is demonstrated in Section 6 that with proper formulation of anti-patterns,
the use of a modified FIRST set is enough to successfully analyze large-scale
software project sources. Any symbol is used instead of explicit description of some
parts of patterns and anti-patterns, that makes the island grammar significantly shorter
and simplifies the grammar development process. Our parser generator is
implemented in C#, thus it can be used with projects written on any .NET Framework-
supporting language.

5. «Any» symbol implementation
We are mainly focused not on the individual islands capturing but on the extraction
of the program hierarchical structure up to a certain level and tend to name the
relevant code not islands but land, so the developed parser generator was named
LanD2 (by coincidence, it is also an acronym of «language description»). Table-
driven predictive LL(1) parsing algorithm [21, pp. 220–228] was selected as the
simplest and most suitable for debugging option for water skipping integration.

5.1 Formal definition of a simplified grammar
We introduce into the grammar the special terminal symbol Any to mark places where
zero or more tokens from the irrelevant area can be matched. We denote by lhs(𝑝)
and rhs(𝑝), respectively, the left and the right part of the production 𝑝. Notation 𝑥 ∈
rhs(𝑝) for 𝑥 ∈ 𝑁 ∪ 𝑇 means that rhs(𝑝) = 𝛼ଵ𝑥𝛼ଶ, where 𝛼ଵ ∈ (𝑁 ∪ 𝑇)∗, 𝛼ଶ ∈
(𝑁 ∪ 𝑇)∗. SYMBOLS(𝛾) is used for the set of terminal symbols needed to compose

all the 𝜔: 𝛾
∗

⇒ 𝜔, 𝛾 ∈ (𝑁 ∪ 𝑇)∗, 𝜔 ∈ 𝑇∗. Through the symbol Any, we formulate the
concept of a simplified grammar.
Definition 2. Let 𝐺 = (𝑁, 𝑇, 𝑃, 𝑆) be a context-free grammar, 𝐴𝑛𝑦 ∉ 𝑇. Simplified
with respect to 𝐺 is the grammar 𝐺௦ = (𝑁௦, 𝑇௦, 𝑃௦, 𝑆௦) defined as follows:

1) 𝑆௦ = 𝑆;
2) 𝑃௦ = {𝑝 ∈ 𝑓(𝑃) ∣ lhs(𝑝) = 𝑆௦ ∨ ∃𝑝ᇱ ∈ 𝑃௦: lhs(𝑝) ∈ rhs(𝑝ᇱ)}, where 𝑓: 𝑃 →

{𝑝 = 𝐴 → 𝛼 ∣ 𝐴 ∈ 𝑁, 𝛼 ∈ (𝑁 ∪ 𝑇 ∪ {𝐴𝑛𝑦})∗} is the mapping that satisfies
the following criteria:

1 PetitParser was also ported to a number of other languages, but those ports are experimental and are not
updated with state-of-the-art features such as bounded seas.
2 https://github.com/alexeyvale/SYRCoSE-2018

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

15

a) ∃𝑃ᇱ ⊆ 𝑃: 𝑃ᇱ = {𝑝 ∈ 𝑃 ∣ 𝑓(𝑝) ≠ 𝑝},  𝑃ᇱ ≠ ∅,
b) ∀𝑝 ∈ 𝑃 ∖ 𝑃ᇱ,  𝑓(𝑝) = 𝑝,
c) ∀𝑝 ∈ 𝑃ᇱ,  ∃𝑛 ∈ ℕ: 𝑝 is representable in the form 𝐴 →

𝛼ଵ𝛾ଵ𝛽ଵ𝛼ଶ𝛾ଶ𝛽ଶ … 𝛼𝛾𝛽 and 𝑓(𝑝) is representable in the form 𝐴 →
𝛼ଵ𝐴𝑛𝑦𝛽ଵ𝛼ଶ𝐴𝑛𝑦𝛽ଶ … 𝛼𝐴𝑛𝑦𝛽, where ∀𝑖 ∈ [1. . 𝑛],  𝛼𝛾𝛽 ∈ (𝑁 ∪
𝑇)∗, and ∀𝑖 ∈ [1. . 𝑛],  ∀𝑎 ∈ FOLLOW(𝐴) , SYMBOLS(𝛾) ∩
FIRST(𝛽𝛼ାଵ𝛾ାଵ𝛽ାଵ … 𝛼𝛾𝛽𝑎) = ∅;

3) 𝑁௦ = {𝐴 ∈ 𝑁 ∣ ∃𝑝 ∈ 𝑃௦: lhs(𝑝) = 𝐴};
4) 𝑇௦ = {𝑎 ∈ 𝑇 ∣ ∃𝑝 ∈ 𝑃௦: 𝑎 ∈ rhs(𝑝)} ∪ {𝐴𝑛𝑦}.

Intuitively, 𝑃௦ contains productions for the start symbol of 𝐺௦ and productions for all
the nonterminals which are reachable from the start symbol. Note that, according to
items 3 and 4, ∀𝑝 ∈ 𝑃௦ ,   lhs(𝑝) ∈ 𝑁௦, rhs(𝑝) ∈ (𝑁௦ ∪ 𝑇௦)∗, i.e. 𝑃௦ really satisfies the
production set definition for a context-free grammar.
The definition of the mapping 𝑓 means that some of the strings generated by 𝐺 contain
substrings which can be replaced with Any, then we obtain strings generated by 𝐺௦.
In the absence of grammar simplification options developer has to work with
grammar 𝐺, which can correspond to the baseline language grammar, as well as be a
specially written more tolerant version of the baseline grammar, containing all the
anti-patterns described explicitly. If Any symbol is supported by the grammar and the
corresponding generator, anti-patterns forming a set 𝑃′ can be substantially
simplified. Symbol Any can be written instead of the parts denoted by 𝛾 in
production’s right hand side in case these parts satisfy the criterion 2c of the definition
2. Verification of this criterion is possible only when solving a direct problem: when
the grammar 𝐺௦ is generated based on the existing 𝐺. In a real situation, there is no
grammar 𝐺 and the developer has to solve the inverse problem: she manually writes
a simplified grammar 𝐺௦, assuming that her knowledge of the particular island
patterns and the general structure of the program is close to the ground truth — the
structure of the baseline grammar 𝐺 — and also considering parts denoted by Any
satisfy the criterion. When this is not the case, unparsed or incorrectly parsed
programs appear at the testing phase, this means that the grammar should be refined.
This process usually takes several iterations.
Notice that despite the parser is built according to grammar 𝐺௦, a program from 𝐿(𝐺)
is needed to be parsed. The modified LL(1) algorithm uses the criterion 2c to translate
the program to the language 𝐿(𝐺௦).

5.2 Parsing algorithm modification
In fig. 2a the modified LL(1) parsing algorithm is presented. The highlighted lines
distinguish it from the standard algorithm. In the given pseudo-code parsing stack is
accessed through the Stack variable, input buffer is accessed through the lexical
analyzer object Lexer with methods NextToken returning the next token from the
input stream and CurrentToken returning the last token that was read. The

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

16

variable t corresponds to an additional buffer for the current token, M denotes the
parsing table. The grammar 𝐺௦ is a regular LL(1) grammar where Any is a regular
token, therefore parsing table construction algorithm remains unmodified and the
construction itself is carried out in the standard way.

Fig. 2. Modified algorithms: (a) LL(1) parsing algorithm, (b) FIRST set memorization
algorithm, (c) FIRST set building algorithm

Modification of the parsing algorithm is caused by the fact that parser do a more
complicated job than checking if the program is valid with respect to 𝐺௦. While parser
is generated by the simplified with respect to some 𝐺 grammar 𝐺௦, the program
derived by 𝐺 comes as the input. As tokens are received from the input stream, the

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

17

modified parser should translate the program from 𝐿(𝐺) to 𝐿(𝐺௦), then it can check
the syntactic correctness of the translated part.
When the terminal symbol on the top of the parsing stack does not match the current
token in t or when a nonterminal symbol X is on top of the stack and there is no
record in the cell M[X, t], the standard LL(1) algorithm reports an error because
there is no explicit option available to continue parsing, and possibly starts an error
recovery routine. For the modified algorithm, this situation is normal because, as it
was said, the program does not belong to the language the parser is generated for. In
case Any is on the top of the stack or the M[X, Any] cell is not empty, the modified
algorithm tries to replace with Any some sequence of tokens from the input stream,
making the transition from the text from 𝐿(𝐺) to the text from 𝐿(𝐺௦). Replacement is
based on the criterion 2c: the set of tokens forming the replaced sequence must not
intersect with the set of tokens which are possible Any successors in accordance with
the parsing stack state. The successors set is called FIRST’, it is built by the modified
version of the standard FIRST algorithm. This modification is discussed in Section
5.3. Obviously, 𝐿(𝐺) ⊆ 𝐿(𝐺௦), because at the Any position not only valid 𝐿(𝐺)
program subsequence can be replaced, but also an arbitrary sequence of tokens from
the complement of a successors set. This makes parser less sensitive to possible errors
in water regions.
It is possible to draw some parallels between the modification given and well-known
error recovery algorithms [21, pp. 228–231, pp. 295–297]: Any symbol looks similar
to the error token denoting place in the grammar where recovered parsing can be
resumed, FIRST’ set seems like the set of synchronization tokens. There are grounds
for such an analogy. The program parsed is erroneous in terms of 𝐺௦. Replacing tokens
with Any, the parser looks for a place from which the program satisfies the grammar
again. However, behind a skin-deep similarity, there is a fundamental difference in
goals, implementation and results obtaining by the algorithms. Standard error
recovery is performed when a program processed is clearly incorrect. The main goal
of the recovery is to resume parsing at any cost. Some significant results of the
previous analysis can be discarded, and a significant part of the input stream, possibly
containing some points of interest, is discarded too. In addition, recovery is not
guaranteed to be successful. According to Section 5.1, the goal of Any processing is
the translation of a presumably valid 𝐿(𝐺) program to 𝐿(𝐺௦). The premise that the
program under consideration is correct with respect to 𝐺 in conjunction with the
observance of the criterion 2c makes input tokens discarding totally predictable. One
can be sure that the parts of the input stream replaced with Any belongs to the water
and can be skipped without loss of the land. Furthermore, as it was previously noted,
predictable and correct replacement with Any is possible in some cases even for
programs that are incorrect with respect to 𝐺.
Further, speaking of the fact that Any successfully replaces a sequence of tokens of
the input program, we will simply say in some cases that Any matches this sequence.

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

18

Keep in mind, that, as shown below, this process is more complex than the standard
token matching.

5.3 The problem of consecutive «Any»
To get tokens denoting the end of the sequence that corresponds to Any, the first
intention is to build the standard FIRST set for a parsing stack, treating the symbols
on the stack as a string starting from its top. Unfortunately, there is a case when the
standard FIRST algorithm is not enough. Sometimes two or more Any tokens can
follow each other at the beginning of the sentences which can be derived from the
stack. For a grammar

A = Any B C; B = a | ; C = Any c;
the FIRST(Stack) set built when the first Any is processed equals to {a, Any}.
The Any token is never returned by the lexical analyzer, so, there is no chance that
parser will recognize a string with no a tokens. As a result, a part of 𝐿(𝐺) remains
uncovered by the parser, and the valid with respect to 𝐺௦ program Any Any c will
never be recognized, because there is no input program that can be transformed to it.
For the example input bbbc$, Any processing starts at the first b and fails at the
endmarker symbol $.
To make the parser capable to cope with a simplified grammar that allows consequent
Any symbols in some derivations, it is needed to modify the standard FIRST
algorithm on the basis of the definition 2. According to it, Any denotes the place
where the matched sequence from an input program may be empty. In the example
above, the c terminal which is explicitly presented in the grammar can be treated as
the end of the sequence to replace, if we assume that the sequence matched by the
second Any is empty. Acting under this assumption, the modified algorithm should
expand the FIRST set with the tokens that may follow the last of the subsequent Any
symbols. This turns the standard FIRST set into the FIRST’ used in Fig. 2a.

In fig. 2b and fig. 2c, modified algorithms for FIRST’ construction are presented. In
fig. 2b, there is an adopted version of the algorithm from [14, pp. 239–240]. It
performs non-recursive construction of FIRST’ sets for all the nonterminals in the
grammar. The sets constructed are memorized in the MemorizedFirst’
dictionary. The original algorithm is proven to be finite, the same proof is valid for
the adopted version. FIRST’ itself is presented in Fig. 2c. Note that Any is not placed
in the FIRST’ set.

As shown in Section 6.1, when to match a sequence of Any is the only available
option for processing some part of the input, FIRST’ helps to find the actual input
subsequence corresponding to the whole sequence of Any symbols. Technically, in
this case input subsequence is matched by the first Any, the following Any symbols
match empty sequences. This is the only possible solution for a simplified grammar,
because to say for sure how to precisely establish a pairwise match between the parts
of the input subsequence and consecutive Any symbols, we need more information

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

19

about the original 𝐺 grammar. A similar problem called overlapping seas is discussed
in [19]: when one sea may follow another, it is impossible to distinguish between the
after-water of the first sea and the before-water of the second, so the second
water is believed to be empty.
The suggested FIRST’ modification is proven to be enough to develop a working
tolerant grammar for the real programming language.

6. Experiments

6.1 Model example
Consider the following grammar:

A = B Any C; B = a | Any c; C = Any b | c;
The corresponding parsing table is presented in Table 1. The rows correspond to the
nonterminal symbols defined in the grammar, the columns correspond to the tokens
that may appear in the buffer t. Each cell contains the alternative that should be
applied when the row nonterminal is on the top of the parsing stack and the column
terminal is the lookahead token. The work of the modified parsing algorithm for a
given input string is described in Table 2. Each row corresponds to the iteration of the
outer while cycle in Fig. 2a, the last row corresponds to the action that takes place
right after exiting the cycle. The numbers in the Action column correspond to the
conditions numbered in Fig. 2a, the number of the true condition for the current
iteration is placed in the table cell.

Table 1. Parsing table for the model example

 a b c Any $

A 𝐴 → 𝐵 𝐴𝑛𝑦 𝐶 𝐴 → 𝐵 𝐴𝑛𝑦 𝐶

B 𝐵 → 𝑎 𝐵 → 𝐴𝑛𝑦 𝑐

C 𝐶 → 𝑐 𝐶 → 𝐴𝑛𝑦 𝑏

This example illustrates some of the advantages of our Any implementation, that were
declared earlier. In contrast to the situation discussed for the Coco/R parser generator
and the grammar in Fig. 1a, at the 4th iteration, the first a token in the input is included
in the sequence being matched by Any, because the Any symbol is really rivalled by
a only at the 1st iteration where the choice between 𝐵 → 𝑎 and
𝐵 → 𝐴𝑛𝑦 𝑐 productions has to be made. The 7th iteration reveals the situation
specified in Section 5.3: there is a derivation where two Any follow each other.
Searching for all the tokens that may appear after Any in 𝐴 → 𝐵 𝐴𝑛𝑦 𝐶 in accordance
to the parsing stack, the FIRST’ algorithm looks beyond the Any, which is in the
beginning of 𝐶 → 𝐴𝑛𝑦 𝑏, and considers b as the possible successor of the sequence
that should be matched by the current Any. As mentioned earlier, in case Any is
immediately followed by other Any symbols, a sequence of input tokens of the

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

20

maximum possible length is replaced with the first Any, and subsequent Any symbols
correspond to zero-length subsequences of the input.

Table 2. Tracing table

 Stack Input X T Action Remark

1 $ A bacaab$ A b (5)

2 $ A bacaab$ A Any (3)

3 $ C Any B bacaab$ B Any (3)

4 $ C Any c Any bacaab$ Any Any (1) FIRST′(𝑐 𝐴𝑛𝑦 𝐶) = {𝑐}

5 $ C Any c caab$ c c (2)

6 $ C Any aab$ Any a (5)

7 $ C Any aab$ Any Any (1) FIRST′(𝐶) = {𝑏, 𝑐}

8 $ C b$ C b (5)

9 $ C b$ C Any (3)

10 $ b Any b$ Any Any (1) FIRST′(𝑏) = {𝑏}

11 $ b b$ b b (2)

12 $ $ $ $ (6)

Dynamically performed computation of the set of symbols that may follow Any takes
into account the actual outer context for the alternatives that are matched (this context
is formed by the elements that are lower on the stack, than the current alternative),
rather than all the possible outer contexts which can arise according to the grammar.

6.2 Real-world repositories analysis
To test the algorithm on real source code repositories, the island grammar for the C#
programming language was developed. The generated parser was applied to the
repositories of three industrial projects ranked from the smallest to the largest by the
number of files with a source code: the LanD project itself (93 files),
PascalABC.NET3 (2725 files), and Roslyn4 (8027 files). PascalABC.NET is a
programming language which combines Pascal syntax with .NET framework
functionality. The corresponding project consists of compiler and IDE sources.
Roslyn is a pair of open-source compilers for C# and Visual Basic. Roslyn project
includes compiler sources and lots of test files capturing different complex and
uncommon variants of a C# program. The number of files in the corresponding
repositories relevant at the time of experiment conducting is given in brackets.

3 https://github.com/pascalabcnet/pascalabcnet
4 https://github.com/dotnet/roslyn

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

21

Fig. 3. Rules of the tolerant C# grammar for LanD parser generator

Rules from C# tolerant grammar are presented in Fig. 3, the complete grammar can
be found in LanD project repository5. Water rules are highlighted. Symbol * denotes
zero or more element repetitions, + denotes one or more repetitions, ? denotes an
optional element, brackets () are used for grouping. Quantifiers of a special kind, *!
and ?!, are used to set the non-empty alternative priority in case the ambiguity is
detected at the parsing table construction stage. With their help, in particular, the
dangling else problem is solved in the Pascal language grammar:

if = 'if' Any 'then' operator ('else' operator)?!
In the C# grammar, the *! construct is used to distinguish between extern alias
declaration and the header of a method written in an unmanaged code. Though these
constructs do not appear at the same nesting level in real programs, they are allowed
to do so according to the lightweight grammar. This results in ambiguity that needs
an additional priority indication.
As it can be seen, Any is widely used for denoting places which are insufficient for
points of interest capturing. Such irrelevant areas are inheritance specification and
type restrictions in class definitions (before_block nonterminal), field and
property initializers (initializer nonterminal and nonterminals which are
directly derivable from it). The largest parts that are matched by Any are blocks of
code in method bodies (block nonterminal). A detailed description of these areas
would make the grammar several times longer. In the corresponding anti-pattern
formulated with Any, only a minimal structuring information should be placed:
boundary tokens { and } are specified and self-nesting is explicitly allowed to ensure
that boundaries will be matched pairwise. This technique is also used for

5 https://github.com/alexeyvale/SYRCoSE-2018/blob/master/LanD Specifications/sharp.land

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

22

attribute and arguments entities, so it can be said that it forms a sustainable
grammar writing pattern.
Any also appears in some patterns, such as enum, class_struct_interface,
operator, denoting lakes among the land. Lakes can mark irrelevant places as well
as places for which we are interested only in the list of matched tokens, not in the
correct subtree specifying the deeper structure.

Table 3. Numbers of unparsed files per C# grammar refinement iteration.

 LanD PascalABC.NET Roslyn

0 8 - -

1 0 39 -

2 0 0 209

3 0 0 31

4 0 0 3

In Table 3, the quantitative data describing the grammar refinement process is
provided. The first column contains the number of refinement iterations passed. In
the table cells, there are numbers of files from each project which still cause parsing
failure. Having started with the smallest project, the LanD itself, we included the
bigger ones to the testing process as the grammar became refined enough to produce
parser capable to parse all the files under consideration. For two refinement iterations,
the number of errors for LanD and PascalABC.NET was reduced to zero.
Surprisingly, even so we got a significant number of erroneously parsed and unparsed
files for Roslyn (209 files out of 8027). Analyzing them we found out that it was
caused by tuple types and tuple literals. It is one of the new features added to C# 7.0.
These constructs may look exactly like method arguments, causing confusion during
parsing. The problem was solved by the less restrictive class member patterns
description: the entire header is matched by the name pattern which includes the
arguments pattern. The arguments pattern matches method arguments as well
as tuple types. A more accurate division of name into modifiers, a type, an entity
name and arguments was moved at the automatically built syntax tree post-processing
stage. Expression bodied properties became another cause of errors. They are widely
used in Roslyn but are not presented in LanD and PascalABC.NET. To process them
as the water, the init_expression anti-pattern was added and the init_value
anti-pattern was refined.
At the last iteration of grammar testing and refinement, the number of errors is still
non-zero. However, on closer inspection it was proved to be not a consequence of
inaccuracies in the grammar structure. The first file6 is a test file for the Roslyn
compiler, it contains the text of the program in Shift-JIS encoding, which is used for
Japanese, moreover, the class name is written in Japanese. The latter causes a lexical

6 https://github.com/dotnet/roslyn/blob/master/src/Compilers/Test/Resources/Core/Encoding/sjis.cs

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

23

analysis error. We consider the usage of national alphabets for entity naming to be a
rare case, but, if necessary, the ID token can be adopted as needed. The second file7
also belongs to the testing infrastructure, it contains a meta-information in a form of
invalid global code: there is a string field, declared directly inside the namespace but
outside of the class. In the third file8, the code containing using directives and a
class definition is placed after the namespace definition. This code is enclosed in #if
false preprocessor directive, so it is not compiled after the preprocessing stage. Our
tolerant parser works with the pure sources and ignores the directives, so it justifiably
treats this program as incorrect.
The resulting C# grammar is aimed at all-encompassing parsing of all the possible
valid C# code variations from three real-world software projects, at the same time it
is both tolerant with respect to code in places indicated with Any, and lightweight.
For instance, the baseline C# parser description9 for the industrial compiler generator
ANTLR, which uses an extended LL(*) algorithm [22], contains 1159 lines, and
lexical analyzer specification contains 1101 lines. The text of our tolerant LL(1) C#
grammar has (including token definitions and different generator options) just 51
lines. Developing a parser for a certain project, one can make the grammar even more
lightweight if some project-specific restrictions are known. In case some coding
conventions are applied, land and water content become less variable. If a legacy code
is parsed, one can be sure that the latest language features are not in use there, so the
grammar is allowed not to contain patterns and anti-patterns for them.
At the next stage of the experiment, the syntax trees of the parsed files were used to
calculate the numbers of successfully discovered LanD entities that we are interested
in, solving the code markup task. As control numbers, the results of counting the same
entities using syntax trees built by Roslyn were used. The entities were grouped into
five categories: enums, classes, fields, properties, methods. The grouping is carried
out in accordance with the hierarchy of classes representing the nodes of a syntactic
tree in Roslyn. Entities which corresponds to Roslyn tree nodes of type
BaseFieldDeclarationSyntax are marked as fields. These are fields
themselves, as well as events described without access methods. Elements
corresponding to nodes of types inherited from
BasePropertyDeclarationSyntax are treated as properties. In addition to
properties themselves, these are indexers and events with explicitly specified add
and remove accessors. Methods correspond to
BaseMethodDeclarationSyntax type: it is the parent type for method,
constructor, destructor, and operator nodes.

7 https://github.com/dotnet/roslyn/blob/master/src/Compilers/Test/Resources/Core/SymbolsTests/Metada
ta/public-and-private.cs
8 https://github.com/dotnet/roslyn/blob/master/src/Workspaces/Core/Portable/Shared/Extensions/ObjectE
xtensions.cs
9 https://github.com/antlr/grammars-v4/tree/master/csharp

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

24

In Table 4, the quantitative results are presented. For all projects in all categories,
LanD detects more entities than Roslyn. The difference is caused by the conditional
compilation directive #if, which is actively used in the projects under consideration.
For example, in PascalABC.NET the #if DEBUG construct is widely used to enable
debug output and additional information collecting, conditional compilation is also
presented in the sources of the syntax analyzers, which are generated with GPPG.

Table 4. Number of entities found by Roslyn/LanD.

 Enums Classes Fields Properties Methods

LanD 13/14 94/95 390/390 248/253 431/436

PABC 356/363 4611/4622 16720/16753 12326/12350 42248/42386

Roslyn 437/441 21583/21622 19606/19737 21886/21919 108040/108400

Roslyn parser has an integrated preprocessor which resolves #if conditions and pass
to the parsing stage only the appropriate parts of the code. LanD is a language-
independent tool, so it does not have a built-in notion of directives. For a lightweight
parser, directives are defined as single-line lexemes which are usually skipped. As a
result, LanD statistics take into account all the entities regardless of whether or not
they are enclosed in the #if directive with an undefined symbol. It should be noted
that C# preprocessing is a fairly simple task. If necessary, the correct preprocessor
can be easily written and applied to the text passed to the LanD-generated C# parser.
However, this will lead to a loss of information about the areas excluded by the
preprocessor.

7. Conclusion
In the present paper, the LL(1) parsing algorithm modification is proposed. This
modification is intended for performing tolerant parsing based on the island grammars
technique. The special Any symbol is integrated into the algorithm to add a capability
to match token sequences which are not explicitly described in the grammar. With
regard to island grammar development, the presence of Any simplifies the description
of water and partially eliminates the need to describe the structure and variations of
irrelevant areas. Besides, Any can be used for relevant code description in case this
code contains lakes — areas for which we are interested only in pure token sequence,
not in the structural information. Our Any implementation fixes the shortcomings of
the closest analogues. It is more accurate and less restrictive in comparison with
Coco/R and LightParse parser generators, it is also more simple than bounded seas
approach, and still powerful enough to parse sources of large-scale software projects.
It is experimentally proved that the lightweight parser of the C# language with built-
in automatic construction of the syntax tree, which was developed by the authors of
the current paper, makes it possible to successfully analyze the source codes of
industrial software products and provides one hundred percent finding of points of
interest. The developed generator of lightweight parsers is planned to be used in
solving the sustainable code markup problems.

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

25

Tolerant grammar description and syntax tree post-processing are supposed to be
simplified by integrating the Schrödinger’s token concept [13] into lexical and syntax
analyzers. In particular, it can be useful for analyzing C# language where, along with
reserved keywords, there are contextual keywords. Some of them (for example, words
where and partial) directly affect the separation of land and water and the land
structure analysis. Possible directions for further research are also a more intelligent
resolution of the consecutive Any problem and integration of the Any symbol into
LR(1) parsing algorithm.

References
[1]. Goloveshkin A.V. Searching and analysing crosscutting concerns in marked up

programming language grammar. Izvestija vuzov. Severo-Kavkazskij region.
Tehnicheskie nauki [University News. North-Caucasian Region. Technical Sciences
Series], 2017, issue 3, pp. 29–34 (in Russian). DOI: 10.17213/0321-2653-2017-3-29-34.

[2]. Afroozeh A., Bach J.-C., van den Brand M., Johnstone A., Manders M., Moreau P.-E.,
Scott E. Island grammar-based parsing using GLL and Tom. Software Language
Engineering: 5th International Conference, SLE 2012, Dresden, Germany, September 26-
28, 2012, Revised Selected Papers. Springer Berlin Heidelberg, 2013, pp. 224–243.

[3]. Van den Brand M., Sellink M.P.A., Verhoef C. Obtaining a COBOL grammar from legacy
code for reengineering purposes. In Proceedings of the 2nd International Conference on
Theory and Practice of Algebraic Specifications. BCS Learning & Development Ltd.,
1997, pp. 6–16.

[4]. Moonen L. Generating robust parsers using island grammars. In Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01). IEEE Computer Society,
2001, pp. 13–22.

[5]. Moonen L. Lightweight impact analysis using island grammars. In Proceedings of the
10th International Workshop on Program Comprehension (IWPC). IEEE Computer
Society, 2002, pp. 219–228.

[6]. Graham S.L., Haley C.B., Joy W.N. Practical LR error recovery. SIGPLAN Notes, vol.
14, issue 8, 1979, pp. 168–175.

[7]. Burke M.G., Fisher G.A. A practical method for LR and LL syntactic error diagnosis and
recovery. ACM Trans. Program. Lang. Syst., vol. 9, issue 2, 1987, pp. 164–197.

[8]. De Jonge M., Nilsson-Nyman E., Kats L.C.L., Visser E. Natural and flexible error
recovery for generated parsers. Software Language Engineering: Second International
Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers.
Springer Berlin Heidelberg, 2010, pp. 204–223.

[9]. Nilsson-Nyman E., Ekman T., Hedin G. Practical scope recovery using bridge parsing.
Software Language Engineering: First International Conference, SLE 2008, Toulouse,
France, September 29-30, 2008. Revised Selected Papers. Springer Berlin Heidelberg,
2009, pp. 95–113.

[10]. Koppler R. A systematic approach to fuzzy parsing. Software: Practice and Experience,
vol. 27, issue 6, 1997, pp. 637–649.

[11]. Carvalho P., Oliveira N., Henriques P.R. Unfuzzying fuzzy parsing. 3rd Symposium on
Languages, Applications and Technologies, ser. OpenAccess Series in Informatics
(OASIcs), vol. 38, 2014, pp. 101–108

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

26

[12]. S. Klusener and R. Lämmel, Deriving tolerant grammars from a base-line grammar. In
Proceedings of the International Conference on Software Maintenance. IEEE Computer
Society, 2003, pp. 179–188.

[13]. Aycock J., Horspool R.N., Schrödinger’s token. Software: Practice and Experience, vol.
31, issue 8, 2001, pp. 803–814.

[14]. Grune D., Jacobs C.J. Parsing Techniques: A Practical Guide (2nd Edition). Springer-
Verlag, New York, 2008, 662 p.

[15]. Scott E., Johnstone A. GLL parsing. Electron. Notes Theor. Comput. Sci., vol. 253, issue
7, 2010, pp. 177–189.

[16]. Mössenböck H. (2014) The compiler generator Coco/R. Available at:
http://ssw.jku.at/Coco/Doc/UserManual.pdf, accessed 02.03.2018.

[17]. Malevannyy M. Lightweight parsing and its application in development environment.
Informatizatsiya i svyaz [Informatization and communication], 2015, vol. 3, pp. 89–94 (in
Russian).

[18]. Malevannyy M.S., Mikhalkovich S.S. Context-based model for concern markup of a
source code. Trudy ISP RAN/Proc. ISP RAS, 2016, vol. 28, issue 2, pp. 63–78. DOI:
10.15514/ISPRAS-2016-28(2)-4.

[19]. Kurš J., Lungu M., Iyadurai R., Nierstrasz O. Bounded seas. Comput. Lang. Syst. Struct.,
2015, vol. 44, pp. 114–140

[20]. Ford B. Packrat parsing: Simple, powerful, lazy, linear time. Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming, ser. ICFP ’02.
ACM, 2002, pp. 36–47.

[21]. Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison-Wesley Longman Publishing Co., Inc., 2006, 1000 p.

[22]. Parr T., Harwell S., Fisher K. Adaptive LL(*) parsing: The power of dynamic analysis.
SIGPLAN Notes, vol. 49, issue 10, 2014, pp. 579–598.

Толерантный синтаксический анализ с использованием
специального символа «Any»: алгоритм и практическое

применение

А.В. Головешкин <alexeyvale@gmail.com>
С.С. Михалкович <miks@sfedu.ru>

Институт математики, механики и компьютерных наук им. И.И. Воровича,
Южный федеральный университет,

344090, Россия, г. Ростов-на-Дону, ул. Мильчакова, д. 8а

Аннотация. Толерантный синтаксический анализ позволяет найти области программы,
представляющие интерес в контексте конкретной задачи, и извлечь информацию об их
структуре. В то время как эти области должны быть подробно описаны в грамматике
языка, другие части программы могут быть не описаны совсем или описаны менее
детально, при этом генерируемый парсер должен признавать корректными все
возможные вариации программы в нерелевантных областях, то есть, должен быть
толерантным по отношению к ним. Островные грамматики — один из основных
способов реализации толерантного парсинга. Термином «остров» обозначаются
релевантные области кода, термином «вода» — нерелевантный код. В настоящей работе
описывается модифицированный LL(1) алгоритм со встроенной обработкой

Головешкин А.В., Михалкович С.С. Толерантный синтаксический анализ с использованием специального
символа «Any»: алгоритм и практическое применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28

27

специального символа «Any», позволяющего сопоставлять последовательности токенов,
не описанные разработчиком грамматики в явном виде. Применение данного алгоритма
к островным грамматикам ведёт к сокращению описания воды и упрощению описания
островов. Наша реализация «Any» является более безопасной для использования и менее
ограничительной по сравнению с ближайшими аналогами в генераторах Coco/R и
LightParse. Также она более предсказуема и требует меньших накладных расходов в
сравнении с концепцией «ограниченных морей», внедрённой в PetitParser. На базе
алгоритма реализован генератор компиляторов со встроенным языком описания
островных грамматик. Как показано в разделе экспериментов, сгенерированный по
островной грамматике языка C# толерантный парсер может быть успешно применён для
анализа крупных промышленных проектов.

Ключевые слова: толерантный парсинг; устойчивый парсинг; легковесный парсинг;
частичный парсинг; островная грамматика; генерация парсеров

DOI: 10.15514/ISPRAS-2018-30(4)-1

Для цитирования: Головешкин А.В., Михалкович С.С. Толерантный синтаксический
анализ с использованием специального символа «Any»: алгоритм и практическое
применение. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 7-28 (на английском языке).
DOI: 10.15514/ISPRAS-2018-30(4)-1

Список литературы

[1]. Головешкин А.В. Поиск и анализ сквозных функциональностей в размеченной
грамматике языка программирования. Известия вузов. Северо-Кавказский регион.
Технические науки, 2017, вып. 3, стр. 29–34. DOI: 10.17213/0321-2653-2017-3-29-34.

[2]. Afroozeh A., Bach J.-C., van den Brand M., Johnstone A., Manders M., Moreau P.-E.,
Scott E. Island grammar-based parsing using GLL and Tom. Software Language
Engineering: 5th International Conference, SLE 2012, Dresden, Germany, September 26-
28, 2012, Revised Selected Papers. Springer Berlin Heidelberg, 2013, pp. 224–243.

[3]. Van den Brand M., Sellink M.P.A., Verhoef C. Obtaining a COBOL grammar from legacy
code for reengineering purposes. In Proceedings of the 2nd International Conference on
Theory and Practice of Algebraic Specifications. BCS Learning & Development Ltd.,
1997, pp. 6–16.

[4]. Moonen L. Generating robust parsers using island grammars. In Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01). IEEE Computer Society,
2001, pp. 13–22.

[5]. Moonen L. Lightweight impact analysis using island grammars. In Proceedings of the
10th International Workshop on Program Comprehension (IWPC). IEEE Computer
Society, 2002, pp. 219–228.

[6]. Graham S.L., Haley C.B., Joy W.N. Practical LR error recovery. SIGPLAN Notes, vol.
14, issue 8, 1979, pp. 168–175.

[7]. Burke M.G., Fisher G.A. A practical method for LR and LL syntactic error diagnosis and
recovery. ACM Trans. Program. Lang. Syst., vol. 9, issue 2, 1987, pp. 164–197.

[8]. De Jonge M., Nilsson-Nyman E., Kats L.C.L., Visser E. Natural and flexible error
recovery for generated parsers. Software Language Engineering: Second International
Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers.
Springer Berlin Heidelberg, 2010, pp. 204–223.

Goloveshkin A.V., Mikhalkovich S.S. Tolerant parsing with a special kind of “Any” symbol: the algorithm and practical
application. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 7-28

28

[9]. Nilsson-Nyman E., Ekman T., Hedin G. Practical scope recovery using bridge parsing.
Software Language Engineering: First International Conference, SLE 2008, Toulouse,
France, September 29-30, 2008. Revised Selected Papers. Springer Berlin Heidelberg,
2009, pp. 95–113.

[10]. Koppler R. A systematic approach to fuzzy parsing. Software: Practice and Experience,
vol. 27, issue 6, 1997, pp. 637–649.

[11]. Carvalho P., Oliveira N., Henriques P.R. Unfuzzying fuzzy parsing. 3rd Symposium on
Languages, Applications and Technologies, ser. OpenAccess Series in Informatics
(OASIcs), vol. 38, 2014, pp. 101–108

[12]. S. Klusener and R. Lämmel, Deriving tolerant grammars from a base-line grammar. In
Proceedings of the International Conference on Software Maintenance. IEEE Computer
Society, 2003, pp. 179–188.

[13]. Aycock J., Horspool R.N., Schrödinger’s token. Software: Practice and Experience, vol.
31, issue 8, 2001, pp. 803–814.

[14]. Grune D., Jacobs C.J. Parsing Techniques: A Practical Guide (2nd Edition). Springer-
Verlag, New York, 2008, 662 p.

[15]. Scott E., Johnstone A. GLL parsing. Electron. Notes Theor. Comput. Sci., vol. 253, issue
7, 2010, pp. 177–189.

[16]. Mössenböck H. (2014) The compiler generator Coco/R. Available at:
http://ssw.jku.at/Coco/Doc/UserManual.pdf, accessed 02.03.2018.

[17]. Малёванный М.С. Легковесный парсинг и его использование для функций среды
разработки. Информатизация и связь, 2015, том 3, стр. 89–94.

[18]. Malevannyy M.S., Mikhalkovich S.S. Context-based model for concern markup of a
source code. Trudy ISP RAN/Proc. ISP RAS, 2016, vol. 28, issue 2, pp. 63–78. DOI:
10.15514/ISPRAS-2016-28(2)-4.

[19]. Kurš J., Lungu M., Iyadurai R., Nierstrasz O. Bounded seas. Comput. Lang. Syst. Struct.,
2015, vol. 44, pp. 114–140

[20]. Ford B. Packrat parsing: Simple, powerful, lazy, linear time. Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming, ser. ICFP ’02.
ACM, 2002, pp. 36–47.

[21]. Aho A.V., Lam M.S., Sethi R., Ullman J.D. Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison-Wesley Longman Publishing Co., Inc., 2006, 1000 p.

[22]. Parr T., Harwell S., Fisher K. Adaptive LL(*) parsing: The power of dynamic analysis.
SIGPLAN Notes, vol. 49, issue 10, 2014, pp. 579–598.

