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Abstract. When developing programs in high-level languages, developers have to make 
assumptions about the correctness of the compiler. However, this may be unacceptable for 
critical systems. As long as there are no full-fledged formally verified compilers, the author 
proposes to solve this problem by proving the correctness of the generated machine code by 
deductive verification. To achieve this goal, it is required to combine the pre- and postcondition 
specifications with the machine code behavior model. The paper presents an approach how to 
combine them for the case of C functions without loops. The essence of the approach is to build 
models, both machine code and its specifications in a single logical language, and use target 
processor ABI to bind machine registers with the parameters of the high-level function. For the 
successful implementation of this approach, you have to take a number of measures to ensure 
the compatibility of the high-level specification model with the machine code behavior model. 
Such measures include the use of a register type in the high-level specifications and the 
translation of the pre- and postconditions into the abstract predicates. Also in the paper the 
choice of logical language for building models is made and justified, the most suitable tools for 
implementing the approach of merging specifications are selected and the evaluation of the 
system of deductive verification of machine code built on the basis of the proposed approach 
is made using test examples obtained by compiling C programs without loops. 
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1. Introduction 
The paper presents a step forward towards the creation of a tool capable of proving 
the correctness of machine code based on the formal specification of a function for a 
high-level language [1]. Such a tool will allow to avoid the assumption about the 
correctness of the compiler by verification of the generated code regarding 
specification of source code functionality. The only way in which the correctness 
analysis of machine code is not necessary is to create a fully formally verified 
compiler [2].  
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However, the existing developments in the field of formally verified compilers [3] 
now do not allow using all the possibilities of existing unverified analogs, for 
example, GCC [4]. This work is necessary for the implementation of an alternative 
approach – deductive verification [5] of compiler products, the correctness of which 
has not been proven. Using this approach will allow you to safely use the already 
created software.  
Different approaches to formal specification and building a model of machine code 
behavior were proposed in different machine code verification projects. Here, the 
formal specification of a function or a sequence of machine code instructions shows 
the pre- and postconditions for a function and the behavior model describes 
mathematical and logical state change formulas. The paper discusses an approach to 
combining ACSL [6] specifications of the C language with the machine code of the 
PowerPC e500mc processor obtained by compiling these functions. The choice of the 
target language is caused by the fact that most high-critical system software like 
operating system kernels is written in C. While the very high-level languages support 
a variety of protective mechanisms – such as the prohibition of pointers or checks 
when casting, the C language is designed for maximum performance by allowing the 
programmer to interact directly with the memory.  
Proof of critical code sections by deductive verification methods can improve the 
reliability of such systems. In the pursuit of performance, compilers try to make the 
most of the capabilities of the target processor. Machine code produced by compilers 
can be extremely difficult for manual verification and specification because the 
compilation disappears all the information about the names of variables and even the 
order of execution of commands may be different than in the original program. Only 
the pre- and postconditions for a particular function remain unchanged. Automatic 
combination of C-level specifications with the logical model of machine code will 
allow you to check its correctness in a fully automatic mode. 

2. Machine code representation 
The specification of machine code instructions in logical languages is a complex and 
lengthy process. Often, the appearance of the function behavior model specification 
in this language is very different from that provided in the processor specification. In 
addition, the lack of special tools makes it difficult to debug such models. To solve 
these problems, the author proposes to use the NML language, together with the 
MicroTESK tool [7]. The NML language contains special structures and data types 
to simplify the modeling of the hardware. The MicroTESK toolset includes universal 
disassembler of the machine code by the NML language and the NML to SMT-LIB 
[8] translator.  
Fig. 1 shows the cmpl operation specification from the official documentation for 
PowerPC e500 core family [9] processors and fig. 2 shows its NML version. From 
here, you can see that the NML language allows you to fully describe processor 
instructions, including their representation in Assembly language and machine code. 
In addition, the use of the NML language as the basis for the representation of 



Путро П.А. Совмещение ACSL спецификаций с машинным кодом. Труды ИСП РАН, том 30, вып. 4, 2018 г., стр. 95-106 

97 

machine code will allow to reuse all NML models, developed by the MicroTESK 
development team for the purposes of testing of microprocessors. 

 

Fig. 1. CMPL official specification 

 

Fig. 2. CMPL NML specification 

3. ACSL specifications representation 

3.1 ACSL specifications translation 
As a logical language, in which ACSL specifications will be translated, the author 
suggests using the WhyML language [10]. The Why3 tool designed to analyze this 
language allows you to apply many useful transformations and optimizations. It also 
allows you to translate WhyML code into logical code for many different provers. In 
addition, the task of translating ACSL specifications into WhyML code has already 
been solved by the Jessie plugin [11] for Frama-C [12]. In the course of research [1], 
it was established that the use of the plugin Jessie directly, not suitable for the tasks 
of machine code analysis.  
Jessie plugin makes a number of simplifying assumptions that do not take into 
account the peculiarities of machine code. Instead, it was decided to take as a basis 
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the unfinished code of jessie3 project [13] – part of the Why3 project. The Jessie3 
code has been modified and extended to take into account the peculiarities of machine 
code. In particular, the language WhyML has been described the type of processor 
registers. In addition, the algorithm of generating targets for the proof was changed 
for the subsequent fusion – pre- and postconditions were separated from the function 
behavior model. 

3.2 Using register type for compatibility with machine code 
Processor registers can be represented by a limited integer type with an extended set 
of operations. Operations include signed and unsigned arithmetic, bitwise operations, 
and memory read operations at the address specified in the register and by offset. To 
describe all such operations high-level languages, use a variety of different types, as 
well as a cast operation. However, using different data types will complicate the proof 
of correctness problem for SMT-solvers. This is especially noticeable in the case of 
bitwise operations, which are available only for bitvectors in SMT-LIB. Bitvectors 
cast operations to an integer type are not supported by the latest SMT-LIB [14] 
standard, and various SMT-solvers offer their own version of the implementation of 
this operation.  
The BitVec type from SMT-LIB is well-suited for describing the type of registers 
because it contains all the necessary arithmetic and logical sign and unsigned 
operations. However, the theory of bitvectors at the why3 level does not support all 
the necessary operations and is built as an unsigned type. Based on the standard theory 
of bitvectors, the author developed a theory to support the type of processor registers. 
The theory supports both signed and unsigned integer types and there is ongoing work 
to add support for pointer arithmetic and memory dereferencing. The driver for CVC4 
SMT-solver [15] was updated for translation of the register type to the type BitVec 
with corresponding mapping of operations.  

3.3 Splitting specification and behavior model 
To merge machine code, you must separate the pre - and post-conditions from the 
behavior of the high-level function, which will then be replaced by the behavior of 
the machine code. To implement this approach, the author uses abstract logical 
predicates of pre- and postconditions checking. These predicates take as input the 
parameters of the verification function, and the predicate of the postcondition is also 
taking its result. Further, by means of axioms predicates are defined by a logical 
expression in accordance with ACSL specifications. In fig. 3 you can see the 
predicates for pre- and postconditions are generated based on the ACSL specifications 
of absolute value function (fig. 4), where usabs_pre – the predicate of a precondition, 
and usabs_post is a predicate of the postcondition. 
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Fig. 3. WhyML abs logic specification 

 

Fig. 4. ACSL abs specification 

3.4 Replacing proof goal 
To facilitate the subsequent merging, the proof goal is substituted during translation 
of WhyML to SMT-LIB. A new goal for the proof can be described as follows: If the 
precondition of a function with its arguments is satisfied then the postcondition with 
the arguments of the function and its result is not satisfied. The negation is used 
because the SMT-solvers operation specifics – searching for example variable values 
that will satisfy all restrictions described in SMT-LIB model.  

 

Fig. 5. Proof goal template 

If such an example could not be found then the assumption is incorrect and the 
predicate of the postcondition is always executed. Therefore, the Expected verdict of 
the SMT-solver – unsat. It is important to note here that arguments and the result of 
the function execution are not associated with machine code at this stage – the merge 
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module solves the problem of their binding. Fig. 5 shows SMT-LIB code of goal to 
prove the correctness of the absolute value function. 

3.5 Merging high- and low-level specifications 
If you perform all the steps described in the previous sections of this paper, namely, 
creating an NML model of the machine code and an ACSL to the WhyML translation 
module, you can perform a merge in two different ways. The first method is the 
merging at the level of WhyML, and the subsequent translation to SMT-LIB by means 
of Why3. This approach has a number of advantages, mainly related to Why3 
capabilities for WhyML code analysis.  

 

Fig. 6 Why3 IDE 

It is worth noting that Why3 IDE (fig. 6), can be used for interactive proof and manual 
simplifications of verification goals. At the moment the MicroTESK team, with the 
support of the author, is developing an NML to WhyML translation module. The 
second approach, as well as the only one implemented at the moment, is merging at 
the SMT-LIB level. The main advantage of this approach is that the MicroTESK tool 
has already been implemented NML to SMT-LIB translation module. In addition, the 
vast majority of operations and data types available in NML have analogs in SMT-
LIB.  
For example, a set of General-purpose registers is modeled in the NML of the 
PowerPC processor model as an array of 32-bit registers with a 5-bit index. There is 
no predefined 5-bit unsigned type in Why3, let alone an array with such an index. 
However, in SMT-LIB, as in NML, you can manually set the length of BitVec 
constants. In addition, the translation directly to SMT-LIB allows to avoid 
unnecessary abstractions that Why3 algorithm for WhyML to SMT-LIB translation 
can add.  
The task of the merge module is to bind together the function arguments and the result 
of function of high-level language with registers and memory of the model of machine 
code, and set the environment. Here, the environment refers to machine-specific 
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things, such as the initial value of the stack register or instruction counter. To do this, 
it is necessary to take into account the specificity of generation SMT-LIB behaviors 
of the machine code and the specification for the function and specificity of the ABI 
of architecture.  
Next, in fig. 7 we can see binding of the arguments of instructions with the registers 
for the PowerPC architecture. Developed by the MicroTESK team, generation SMT-
LIB by the NML model produces thousands of lines of code. This code can be divided 
into two main parts: The declaration of all the logical constants needed to describe 
the behavior model and the description of the state transformation formulas by means 
of using one assert per machine code instruction and one for every of machine 
instruction argument. 

 

Fig. 7 Binding function argument and result 

4. Evaluation 
The developed approach was successfully used to verify the machine code of the 
absolute value function on the basis of bitwise operations (“Fig. 8”), for which a 
verdict was obtained, clearly indicating correctness of the function. Tests were also 
developed to verify the correctness of the implementation of translation of 
mathematical and logical operations of the ACSL language. Testing of the NML 
model was done by means of MicroTESK tool. 

 

Fig. 8 Absolute value function 

5. Related works 
In the why3-avr [16], [17] project, the deductive verification approach is used to prove 
the correctness of non-loop programs in the assembly language of the AVR 
microcontroller. The AVR microcontroller used in this study has a fairly simple 
instruction set that allows you to manually specify the behavior model for each 
command in the WhyML language, which does not have special means to describe 
such structures. Also, the model code is described in such a way that allows the 
programmer to simply copy the function code in the AVR assembly language and add 
to it a formal specification to get WhyML code for checking the correctness of the 
function. This approach is especially useful for direct development in a low-level 

Putro P.A. Combining ACSL Specifications and Machine Code. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 95-106 

102 

language because the Why3 tool has rich capabilities for transformation and analysis 
of Why3 code. In addition, the use of Why3 allows converting the WhyML code for 
proving by various SMT solvers.  
However, the program in assembly language is different from compiled machine code 
that in machine code is a sequence of bytes where there is no all information 
associated with label names and variables, as well as the formal specification. In 
addition, machine code does not allow you to abstract from your environment as much 
as assembly language code. For example, in machine code, indicators such as the 
address of a function in memory and the value of the stack register at the time of 
entering the function are important. Also, a high-level formal language specification, 
such as C, uses various abstractions, such as parameter names and variables, that 
become unavailable after they are translated into assembly language or machine code. 
The approaches proposed by the author differ from those described in this project in 
that they allow using the specification of the high-level language function for 
analyzing machine code, as well as scaling the supported command system with the 
help of a specialized modeling language hardware NML. 
In the Technical report published by the University of Cambridge Computer 
Laboratory [18], the HOL4 proof assistant [19] is used for Formal verification of 
machine-code programs. The paper describes a tool able to verify the machine code 
for subsets of instructions for popular architectures ARMV4, PowerPC, x86. 
Behavior model for these instructions was developed by independent developers, so 
models for both ARM and x86 was designed for HOL4 language [20] [21], and the 
PowerPC model [22] were manually translated from the Coq language [23] to HOL4.  
Here it is worth noting the similarity with the project why3-avr because instructions 
behavior models were specified manually on unspecialized for such a purpose 
language. The report terminology uses four levels of abstraction to describe the 
logical implementation and specification of functions. To obtain a low-level function 
model (level 2) automatic decompiler translates the machine code (level 1) into 
recursive functions on the HOL4 language, and also generates their specifications. 
The use of recursion, in this case, avoids the need to define loop invariants. The user 
can then focus on interactively proving the properties of the generated function using 
the HOL4 proof assistant.  
For verification, the user also needs to describe the high-level model of the function 
(level 3), as well as the specification of the function for (level 4). Further, by using 
relations between levels, user proves that the machine code model complies with the 
functional specification. In contrast to the interactive HOL4 approach, the approach 
used in the author's study allows the presence of ACSL specifications to carry out all 
stages in automatic mode. Also in the author's approach to proving the correctness of 
machine code is not necessary to have a logical model of the behavior of the function 
in a high-level language. This degree of automation is achieved including the use of 
automatic SMT-solvers, in contrast to the interactive proof assistant HOL4. 
Particularly worth noting is the approach to the translation of programs into recursive 
functions. The use of high-level language loop invariants at the machine code level is 
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extremely difficult due to the influence of various compiler optimizations. The 
recursive functions may help to solve these problems. 
A number of papers also describe the use of model checking [24] approach for formal 
verification of machine code. Therefore, in the paper [25] for verification of machine 
code of the microcontroller Motorola M68hc11 is used Bogor framework [26].  This 
approach does not imply the presence of function contracts but is based on the use of 
formally specified behavior models of the system as a whole. As a result, it can be 
said that the scope of the requirements to be tested varies with the use of deductive 
verification and model checking. 

6. Conclusion 
Most of the work that is reviewed specifies the behavior of machine code instructions 
manually in the logical language. However, in order to simplify and improve the 
reliability of processor models, the author proposed to describe them in the NML 
language, designed specifically for such purposes, with the subsequent automatic 
translation of the model into logical languages. The use of this approach is also 
facilitated by the presence of a large set of tools in the MicroTESK tool to work with 
NML, including the NML to SMT-LIB translator. The particularity of ACSL 
specifications translation to WhyML code, for the case of verification of machine 
code, such as the need to separate the specification from the behavior model, as well 
as the importance of the introduction and implementation of the register type.  
The observance of such rules and guidelines will allow for automatic merging of 
function specification and machine code behavior model and thus avoid the need for 
manual specifying machine code behavior model on the logical language, as required 
in the project why3-avr. There were proposed two approaches to merge of code 
specifications and behavior models: at the level of WhyML, and at the level of the 
SMT-LIB. The first approach allows to use SMT-LIB code generated directly from 
NML model that help us to avoid extra complexity coming from double translation 
NML to WhyML and then WhyML to SMT-LIB. The second approach allows to use 
all the features of the Why3 tool, such as interactive transformations and support of 
various provers and solvers. 
The use of the methods and approaches described in this paper will allow you to fully 
automate deductive verification of machine code without loops for compliance with 
the contract specification in ACSL language. 
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Аннотация. При разработке программ на языках высокого уровня, разработчикам 
приходится делать предположение о корректности компилятора. Однако это может быть 
неприемлемо для критически важных систем. Поскольку на данный момент не 
существует полноценных компиляторов, для которых корректность доказана, автор 
предлагает решать эту проблему путём доказательства корректности сгенерированного 
машинного кода методами дедуктивной верификации. Для достижения данной цели 
необходимо решить ряд задач, одной из которых является слияние модели 
спецификаций пред- и постусловий с моделью поведения машинного кода. В данной 
статье представлен подход к проведению слияния спецификаций для случая Си функций 
без циклов. Суть подхода заключается построении моделей как машинного кода, так и 
его спецификации на едином логическом языке, и использовании ABI целевого 
процессора для связывания машинных регистров с параметрами функции высокого 
уровня. Для успешной реализации такого подхода необходимо предпринять ряд мер по 
обеспечению совместимости высокоуровневых спецификаций с моделью поведения 
машинного кода. К таким мерам, в частности, относятся использование типа регистра в 
высокоуровневых спецификациях, трансляция пред- и постусловий в абстрактные 
предикаты. Также в статье производится и обосновывается выбор логического языка для 
построения моделей, выбираются наиболее подходящие инструменты для реализации 
подхода слияния спецификаций и производится оценка работы системы дедуктивной 
верификации машинного кода, построенной на основе предложенного подхода, с 
использованием тестовых примеров полученных путём компиляции Си программ без 
циклов. 

Ключевые слова: дедуктивная верификация; формальные методы; машинный код; 
ACSL. 
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