Tracing ext3 file system operations in the
QEMU emulator

V.M. Stepanov <vladislav.stepanov@ispras.ru>
P.M. Dovgalyuk <pavel.dovgaluk@jispras.ru>
D.N. Poletaev <poletaev@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
11 Lasarevskaya Street, Velikiy Novgorod, Russia, 173000

Abstract. The paper proposes an approach to monitoring file operations through capturing
virtual disk accesses in the emulator. This method allows obtaining information about file
operations in the OS-agnostic manner but requires a separate implementation for each file
system. An important problem for implementing this approach is the correct handling of
changes in the file system. Operating systems that cache write requests can perform operations
in any order. The authors have created a method for detecting read, write, create, delete and
rename operations, and a module for QEMU, which monitors operations in the ext3 file system.
The advantage of this method over others is that it does not interfere with the operation of the
OS and does not depend on it. It is assumed that the QEMU module for file systems other than
ext2/3 can be implemented using the methods described in this article.

Keywords: virtual machines; file systems; monitoring; QEMU; introspection
DOI: 10.15514/ISPRAS-2018-30(5)-6

For citation: Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system
operations in the QEMU emulator. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp.
101-108. DOI: 10.15514/ISPRAS-2018-30(5)-6

1. Introduction

The task of monitoring file operations is relevant when debugging the OS and its file
system drivers, as well as researching the behavior of systems with an unknown
internal organization, particularly performing the security audit of the information
processed by such systems. The essence of the task is to display the actions and the
names of the files with which the operations are performed.

Current solutions for file system monitoring are typically based on using the tools of
the operating system and tracing system calls. These solutions differ depending on
the operating system, and some exotic OSes might not have the appropriate tools for
this task.

The approach described in this article does not require any knowledge about the
operating system used. The information about file system operations is obtained

101

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

through capturing the disk requests of the virtual machine. The implementation that
has been created is based on the QEMU emulator [1]. By modifying the source code
of the project, functionality has been added to monitor and log the file operations of
the system.

A data read or write query contains the disk sector number and the number of bytes
to read or write. The QEMU module identifies the file names based on the sector in
the query, the virtual disk information and the knowledge about the structure of the
file system. Every file system type has its own distinctive internal organization
different from others and thus requires its own implementation of the module. As an
example, a monitoring tool for the ext3 file system [2] has been implemented, which
is one of the file systems used in Linux-based operating systems.

As a result of this project, a module was created to monitor file operations of any
guest OS, but only if it uses an ext3 file system. It is expected that the ideas used in
this implementation can be applied to other file systems as well.

2. Overview of existing solutions

First, the authors would like to review several tools for file system monitoring.
Inotify is a Linux kernel subsystem intended for monitoring file system events [3].
This mechanism can be used to monitor such file operations as reading, creating,
deleting, changing files, etc., by subscribing to events. The application creates an
inotify object and informs the kernel about the files needed. The kernel responds by
sending notifications, which can be received by the application by reading the file.
Users can monitor the activity of the file system by using command-line utilities from
the inotify-tools library.

Other operating systems have similar mechanisms. For example, Windows uses
FileSystemWatcher [4]. FreeBSD and Mac OS X allow monitoring changes using
kqueue [5].

QEMU-Based Framework for Non-intrusive Virtual Machine Instrumentation and
Introspection [6] is a system that uses a binary application interface to analyze the
state of the virtual machine. The system includes a file monitoring plugin, which
receives information about file operations by capturing the corresponding system
functions. Since these system calls are different for different operating systems, a
specific plugin is created for each operating system. Currently, file monitoring is
implemented for Windows and Linux. Unlike the preceding mechanisms, this tool
allows monitoring the file operations of the virtual machine without interfering with
the guest operating system processes.

The proposed approach, like the plugin described above, does not require modifying
the operating system. The difference is that the implementation of this approach does
not have any dependencies on the operating system. Instead, it depends on the file
system.

One of the possible use cases of this project implies monitoring file operations in
exotic file systems where information about system calls is not present or which do

102

CrenanoB B.M., Jlosramok I1.M., IToneraes JI.H.. OrcnexuBanue onepaiiuii ¢ $ailioBoit cucteMoii ext3 B sMylstope
QMU. Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 101-108.

not have system calls in their traditional sense because the whole system operates in
a privileged mode. The information about what files are being used in such an
operating system can be useful for analysis.

3. Ext3 file system

The authors will now briefly describe the structure of the ext3 file system, which the
tool is intended for. The space of the file system is divided into fixed-size blocks. For
the purposes of optimization, the blocks are combined into groups. Each group has a
description block, bit masks, and an inode table (fig. 1).

Boot Block Block group 0 Block group n
7 F
Group Data block | Inode Inode)
Super Block Descriptors Bitmap Bitmap Table Data blocks

Fig. 1. Ext3 file system structure

An inode is a structure which contains the addresses of all blocks of the file, as well
as its attributes, such as the file type and access permissions. The name of the file is
contained in a separate structure — the parent directory. The directory contains a table,
in which each of the entries represents a child file and includes the name and number
of the respective inode.

Directory Entry

| Name | Inode |

Inode

Accessed Time | Size

uib | GID

Block 1| Block 2 Indirect Block 1

/ //y File Content

Block
\ File Content

File Content File Content Addresses

Fig. 2. General information structure of the ext3 file system: directories, inodes, and data
blocks
The physical location of the file is represented as data block numbers in the inode. If
any inode does not have sufficient space to store all the addresses of the data blocks,
references to additional address blocks are used. Address block entries can refer to

103

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

other address blocks, and so on. In this case, such address blocks are called double
and triple indirect blocks. The interconnections of the described file structures are
depicted in fig. 2.

When opening a file, the OS uses the path name to access the data. The directory
system converts the ASCII name into information needed to find the data. However,
for the purposes of monitoring file operations, the authors are interested in the reverse
process. A method is needed that will make it possible, by using a specific sector
number, to obtain the name of the corresponding file.

4. Possible ways of finding the file name based on its sector
number

The task to find the full file name based on one of its sector numbers has several
possible solutions.

The first way implies that every disk operation should be accompanied by iterating
through all the files and the addresses of their data blocks until the file with the
particular sector is found. The time to complete such iteration is, in the worst case,
linearly dependent on the space used in the partition.

Implementing this solution showed that for the 6.0 GB disk with 4.0 GB used, in an
ext3 file system, one such disk query may take up to 12 seconds. This time
measurement was performed on a computer configuration using an AMD FX-8370E
processor and 16 GB of RAM. Thus, it may be concluded that to achieve high
performance, the number of full file system iterations should be minimized.

Another way to do this implies creating special data structures with the aim to achieve
higher searching speed. A directory tree with file names and an associative array with
fast search functionality allow completing this task in logarithmic time. It is only
required for the keys of the associated array to be the block numbers, and for the
values to be the names of the respective files in the directory tree.

Creating these fast search structures is performed on capturing the first query to the
partition. The question of how these structures should change while capturing new
operations in the file system has several answers.

The first option is: the structures can remain unchanged. In this case, file accesses
performed before the operating system has been loaded can also be traced. However,
changing the size and location of these files makes the output data about file
operations irrelevant or incomplete.

The second option is: the structures can be rebuilt from scratch with some determined
periodicity. In this case, operations with new and changed files can be traced.
However, some situations are possible when an operation with a recently created or
enlarged file takes place, but the fast search structures have not yet been updated. In
this case, such an operation can be left untraced.

The third option is: the structures can be rebuilt after writing to index descriptors,
address blocks, and directories. This allows the fast search structures to always
correctly reflect the current file system state. However, this method leads to a

104

CrenanoB B.M., Jlosramok I1.M., IToneraes JI.H.. OrcnexuBanue onepaiiuii ¢ $ailioBoit cucteMoii ext3 B sMylstope
QMU. Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 101-108.

significant increase in time needed to process all the operations that change the file
system state, which can negatively affect the performance of the guest OS.

The fourth option implies that when operations that change the file system occur, the
existing fast search structures also change. With this method, fast processing of any
disk accesses and monitoring of the current information about file operations can be
achieved. The drawback of this solution is its implementation complexity.

Operations that change the file system include creation, deletion, expansion,
truncation, renaming and moving of files. The mechanism to recognize these
operations is based on detecting the structure to which data is written and then
comparing old data with new. For example, if an operation results in adding a new
entry to a directory, it indicates that a new file was created, or that an old file has been
moved to this directory. For each type of operations, a specific processing mechanism
exists, which performs required changes to the directory tree and the associated array.

5. The problem of unspecified order of queries to the disk

There is a problem which results in some file operations not being detected using the
described methods. The problem is that most OSes do not perform writing to the disk
immediately but delay it for a period of time. At the same time, the order in which the
pending writing operations will eventually be performed can vary. In some cases, the
information is registered in structures even though no information about their
existence has been written to the disk yet.

The time diagram in fig. 3 demonstrates one of the possible sequences of operations
when writing data to a new file.

Parent directory; : ; : : ‘FL
Inode ! ! :

Parent
directory

File System Objects

Data block 1 — i ¢ ¢
: : : : : : I Data block 1 l |1nduect block 1| |Ind|reclblock2
Indirect block 15 : | I
Indirect block 2} v v
' | Data block 2 | | Indirect block 3|

Data block 2 |

Indirect block 3}

Data block 3 |

Time

Fig. 3. Time diagram of writing data in case of new file creation
The solution to this problem is to store the information about unidentified operations
for some time. When adding addresses to an inode and indirect blocks, previously
unidentified operations are checked. If the address of the new block matches the
destination of any of the earlier operations, this operation is processed.

105

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

A separate case occurs when creating files. In this situation, writing to the parent
directory and the inode can be performed in any order. If, at the moment of writing to
the directory, writing to the inode has already taken place, then this file operation is
processed. Otherwise, the processing will be postponed until writing to the inode.
One more case is file moving. Sometimes the file information is added to the new
directory first and is removed from the old one only after that. In this case, the file is
moved in the directory tree while the deletion is ignored.

6. Testing

The implemented module creates its additional structures once during its operation,
and then changes them in accordance with the new file system state. To verify that
the module operates as expected, a series of tests were conducted using different guest
OS images. The tests involved opening applications, navigating from folder to folder,
as well as reading, creating, changing, deleting, renaming and moving files. Various
situations were checked when the order of operations is ambiguous.

The following is an example of the module operation. In the guest OS (in this case,
Debian), the command “dd if=test of=test1” is performed. This command copies the
data in file “test”, 1 Kb in size, into file “test]”. The entries added to the log file are
presented in fig. 4.

read 6926160 16384 /bin/dd
read 6926192 32768 /bin/dd
read 6926256 12288 /bin/dd
read 10263952 4096 /home/debian/test

create /home/debian/testl
write 2640360 4096 /home/debian

write 10490400 4096 /home/debian/testl
Fig. 4. Fragment of a log file generated by the module

Log entries contain information about the operation type, the sector number, the
number of bytes affected and the file name. In this case, first, the executable file “dd”
from the directory “bin” is read, and then the file “test” is read. Approximately 20
seconds after the input of the command, pending operations of writing to the disk are
performed, and the log file is updated with new events. Then, the file “testl” is
created, which is populated with data from “test”.

The testing was performed using Linux, FreeBSD, Windows 10 and KolibriOS
operating systems [7]. The tests show that the module successfully registers file
operations and processes the file system changes. At the same time, no lags due to the
module monitoring were observed.

KolibriOS was chosen for testing as an example of an exotic operating system. This
is a miniature OS, with its core and most of its programs written in assembly language.
While testing, it was found that writing operations in this OS are not cached but
performed immediately. Consequently, the problem of the order of operations being
ambiguous is irrelevant for KolibriOS.

106

CrenanoB B.M., Jlosramok I1.M., IToneraes JI.H.. OrcnexuBanue onepaiiuii ¢ $ailioBoit cucteMoii ext3 B sMylstope
QMU. Tpyowt UCII PAH, Tom 30, Boim. 5, 2018 r., ctp. 101-108.

Thus, it was verified that the module functions correctly with each of the tested OSes.

7. Conclusion

In this paper, an approach to file operations monitoring has been described. This
approach allows analyzing operations with operating system files and applications in
a virtual machine. The implemented module works with the ext3 file system. It is
intended for capturing virtual disk accesses in the guest system and writing the
operation type and file name into a log. In contrast to internal file system monitoring
tools, such as inotify, the created QEMU module can monitor file operations without
interfering with the operation of the guest OS. In addition, the module does not
depend on system calls, which allows it to work with any OS. While implementing
the module, it has also been made possible to achieve a high speed of file operations
processing. To do this, QEMU creates and maintains special structures: binary search
trees and directory trees. The solutions described in the article can be applied to
develop monitoring instruments in other file systems, including FAT32, NTFS, ext4.

References

[1]. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX
Annual Technical Conference, 2005, pp. 41-46.

[2]. Brian Carrier, File System Forensic Analysis. Addison-Wesley Professional, 2005.

[3]. Koen Vervloesem. Inotify: Watch your filesystem. Linux format, Ne LXF140, 2011.

[4]. FileSystemWatcher. https://msdn.microsoft.com/en-
us/library/system.io.filesystemwatcher(v=vs.110).aspx

[5]. Jonathan Lemon. Kqueue - A Generic and Scalable Event Notification Facility,
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference, 2001,
p.141-153

[6]. P. Dovgalyuk, N. Fursova, I. Vasiliev, V. Makarov. 2017. QEMU-based framework for
non-intrusive virtual machine instrumentation and introspection. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017), pp.
944-948. https://dx.doi.org/10.1145/3106237.3122817

[7]. Artem Jerdev. Kolibri-A: a lightweight 32-bit OS for AMD platforms, Postgraduate
Conference for Computing: Applications and Theory (PCCAT 2011), pp. 20-22.

OTcnexuBaHue onepauun ¢ cpannoBon cuctemon ext3 B
amynsitope QMU

B.M. Cmenanos <vladislav.stepanov@ispras.ru>
II.M. Jloszanok <pavel.dovgaluk@ispras.ru>
/. H. Ilonemaes <poletaev@ispras.ru>
Hoszopoockuii cocyoapcmeennsiti ynusepcumem umenu fApociaséa Myopoeo,
173000, Poccus, e. Benuxuii Hogeopoo, yn. Jlazapesckas, dom 11

AHHoTammsi. B pabore paccmaTpuBaeTcsi moaxoj K OTCIekKHBaHUIO (ailIoBbIX omeparuii ¢
MOMOIIBIO TIEpEXBATa 3alpOCOB K BHUPTYalbHOMY IHCKY B 3MynsaTope. Takoil cmoco®
MO3BOJISIET MOJyYaTs MHpOpManuio o (GainoBbIX omnepaiusx He3aBucuMmo ot rocteBoit OC,

107

Stepanov V.M., Dovgalyuk P.M., Poletaev D.N. Tracing ext3 file system operations in the QEMU emulator. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 101-108

OHAKO TpeOyeT OTHENFHOM pealu3alud Ui Kaxaod aimoBoit cucrembl. BaxHoit
npo0JieMo IS peann3anuy JAHHOTO ITOJX0/a SIBIISIETCSl KOppeKTHas: 00padoTKa N3MEHEHUH
B (paitioBoii cucreme. C onepauuOHHBIMU CUCTEMaMHU, KOTOPbIE HMEIOT CBOMCTBO KELIMPOBATh
OTIepaLNY 3aIMCH, BOSHUKAIOT OCJIOKHEHUS, TaK KaK OIllepaliiu 3alliCH MOT'YT BBIIOJIHATHCS B
MPOM3BOJBHOM Hopsanke. s mpumepa moxaxozaa Ol co3maH Moxyib smynsatopa QEMU,
OTCIeKHMBAIOLMK omepauun ¢ (aimoBoit cuctemoit ext3. IlpenmyiiecTBO HaHHOTO
HHCTPYMEHTA Iepe]] APYTUMHU COCTOUT B OTCYTCTBHH BMemIarenbcTBa B paboty OC, a Taxxke
orcyrcreuu 3aBucumoctd o OC. brnarogaps 3ToMy BO3MOXHO HCIOJIb30BaHHE HAa TAaKUX
sk3otrueckux OC, ¢ KOTOPBIMH He padoTalOT APYTHe HHCTPYMEHTHI MOHUTOPHHTA (BaiIOBBIX
omnepammii. [Ipenmonaraercs, uro moxyns QEMU mist GpaiiinioBeIX CHCTEM, OTIIMYHBIX OT eXt2/3,
MOXeT OBITh pean30BaH C UCIIOJIH30BAaHUEM METOJIOB, TOJJOOHBIX OIIMCAHHEIM B CTAThE.

KnioueBble ciioBa: BUPTyajbHbIC MAIIUHBI, (aidnoBele cucTeMbl; MOHUTOpUHT; QEMU;
HUHTPOCTIEKIHS

DOI: 10.15514/ISPRAS-2018-30(5)-6

Jas uutupoBanus: CremanoB B.M., Jlosramox II.M., Ilomeraes [I.H.. OrcnexxuBanue
omnepanuii ¢ painosoii cucremoit ext3 B amymsirope QMU. Tpyansr UCIT PAH, Tom 30, Bbm. 5,
2018 r., ctp. 101-108 (Ha anrmmiickoM s3bike). DOIL: 10.15514/ISPRAS-2018-30(5)-6

Cnucok nutepatypbl

[1]. Bellard, F. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX
Annual Technical Conference, 2005, pp. 41-46.

[2]. Brian Carrier, File System Forensic Analysis. Addison-Wesley Professional, 2005.

[3]. Koen Vervloesem. Inotify: Watch your filesystem. Linux format, Ne LXF140, 2011.

[4]. FileSystemWatcher. https://msdn.microsoft.com/en-
us/library/system.io.filesystemwatcher(v=vs.110).aspx

[S]. Jonathan Lemon. Kqueue - A Generic and Scalable Event Notification Facility,
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference, 2001,
p.141-153

[6]. P. Dovgalyuk, N. Fursova, I. Vasiliev, V. Makarov. 2017. QEMU-based framework for
non-intrusive virtual machine instrumentation and introspection. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017), pp.
944-948. https://dx.doi.org/10.1145/3106237.3122817

[7]. Artem Jerdev. Kolibri-A: a lightweight 32-bit OS for AMD platforms, Postgraduate
Conference for Computing: Applications and Theory (PCCAT 2011), pp. 20-22.110

108

