TLA+ based access control model
specification

A.V. Kozachok <a.kazachok@academ.mks.rsnet.ru>
Academy of the Federal Guard Service,
35, Priborostroitelnaya St., Oryol, 302034, Russia

Abstract. The article describes TLA+ access control model specification for computer systems,
ensuring compliance with the mandatory integrity and confidentiality monitoring requirements
with considering memory-based covert channels. The distinctive feature of the model is taking
into account the characteristics of the lifecycle of electronic documents and their operating
procedure. To specify the access control model, Lamport's Temporal Logic of Actions
language was chosen (TLA+). Its notation seems to be the closest to generally accepted
mathematical notation and its expressive capabilities and tools allow describing and verifying
systems specified as finite automata. The following actions are defined in the model:
create/delete a subject, read, write, append (blind write), create/delete an object, grant/remove
access rights, include an object, exclude a nested object, approve an object (document), archive
an object (document), cancel an approved object (document), copy an object (document). The
following invariants are also defined: the type invariant (includes checking the compliance of
all fields of the object, the compliance of the subject type, the uniqueness of the subject and
object identifiers) and the safety invariant (includes checking the confidentiality and integrity
labels of the interacting subjects and objects, the correctness of rights assignment procedures).

Keywords: security models; computer systems; verification, modelling; temporal logic;
security policy; access control.

DOI: 10.15514/ISPRAS-2018-30(5)-9

For citation: Kozachok A.V. TLA+ based access control model specification. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 147-162. DOI: 10.15514/ISPRAS-2018-30(5)-
9

1. Introduction

The problems of ensuring information security become more acute when information
technologies are developing and penetrating in all spheres of life. The complexity and
amount of software being developed and used are constantly increasing, which leads
to the emergence of new threats and vulnerabilities.

It should be noted that some vulnerabilities are caused not by typical errors when
programming, but by errors when designing software systems in general. Such defects
are quite difficult to detect and to correct during the operation phase.

147

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

One of the possible solutions to solve this problem is the modeling and verification
of the algorithms being developed for compliance with specified properties.

It is especially important to model the protection mechanisms of computer systems.
For example, "The Information Security Requirements for Operating Systems" by
FSTEC of Russia and developed on the basis of these requirements and according to

GOST R ISO/IEC 15408 protection profiles and security targets contain the
requirements of the ADV_SPM.1 functional component to present a formal security
policy [1, 2]. In scientific studies, the formal description of security policies and
access control models in operating systems is also given special attention [3-6].

There are a number of formal languages and relevant software tools providing the
ability of the formalized description of a mathematical model [7]: Alloy [8], B [9],
Event-B [10, 11], VDM [12], Z [13], TLA + [14-17].

2. Problem Formulation
Access control systems in computer systems provide mechanisms for controlling and
restricting access for users or processes (subjects) to a variety of objects.

As part of the research, the task was to develop a model for controlling access to
computer system resources, which would ensure that the requirements of mandatory
integrity and confidentiality monitoring are met, taking into account information
flows by memory [18].

The distinctive feature of the model is taking into account the characteristics of the
lifecycle of electronic documents and their operating procedure.

To specify the access control model, Lamport's Temporal Logic of Actions language
was chosen (TLA+). Its notation seems to be the closest to generally accepted
mathematical notation and its expressive capabilities and tools allow describing and
verifying systems specified as finite automata [19-21]. Also, in some research works,
this notation was used to solve the problem of verifying access control models [22,
23].

3. Model Specification

The extension of temporal logic [24] is Lamport's Temporal Logic of Actions. It
allows describing interacting and open-loop systems.

Unlike predicate logic, temporal logic of actions has the following operators [14]:
o "always in the future" operator;

B "always in the past" operator;

(O "next-time" operator;

(© "at one point in time" operator;

O "once in the future" operator;

¢ "once in the past" operator;

U "until" binary operator;

148

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa.
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162

S "since" binary operator.
The basic relations between the operators can be represented as follows:

OF = (F v —F)UF oF = FS(F v —F)

Logical formulas in the proposed access control model are defined as follows (in the
Backus-Naur form):

<¢> |= PredAction | p(t,,...,t) | —¢
lpvolonglo—>¢|Vx:¢
|3x: 4| op| 0¢| Of | pUp

| Mo | ep| O | S0,
where PredAction — actions, p — arity of a predicate n, ¢,...,f, — terms, x —
variable.
In general, the specification of the access control model in TLA+ is as follows
Spec = Init AO[Next] (1)

where [nit — initialization procedure of initial values of model variables, Next —
action predicate that changes the state of the model and the values of variables, V¢S
— variables of the model.

3.1 Definition of Model Variables

Variable values may change after the execution of action predicates:
VARIABLES 4,0, S,

vars £ <A,O,S>.

where A4 — set of current (happened) access events, O — set of objects, S — set of
subjects, 2 — "equal by definition" symbol.

3.2 Creating Data Types Describing Objects and Subjects of the
Model

TLA + does not have strong typing (only embedded types are checked by default);
however, checking of invariants of types is an integral part of the specification,
because the verification is performed by the ModelChecking method [25]. A number
of values specified in the model are model for reducing the resource-intensiveness of
the verification process, but they do not affect the generality and adequacy of the
model as a whole.

Description of the type that specifies the objects:

149

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

Objects & [oid : ObjectIDs, meta : ObjectMeta,body : ObjectBody,
owner : SubjectIDs, grantm : GrantedRights,
grantb : GrantedRights,incl : ObjectIDs,
st: ObjectStates].

Description of the type that specifies the subjects:
Subjects = [sid : SubjectIDs, cnfl : ConfidLevels,
int/ : IntegrLevels, cat : SUBSET Categories,
owner : Subjectle].
Sets of identifiers of subjects and objects (model values):
SubjectIDs = 0...5,
ObjectIDs £ 0...5.

Sets of labels for the levels of confidentiality, integrity, and categories (model
values):

ConfidLevels £0...1,
IntegrLevels £ 0...1,

Categories = {"c1","c2","c3"}.
Set of object states ("work", "approved", "archived", "cancelled"):
ObjectStates = {" work ","approved"," archived"," cancelled "}.
Set of types of access and tuple of rights assignment
Rights = {"read", " write"},
GrantedRights & <sid : SubjectIDs, 1 : Rights).

For electronic documents in electronic document management systems, there is the
separation of rights of access to meta information and the content of a document [26].
This opportunity was also taken into account in the developed model:

ObjectParts = {"meta","body"},
ObjectMeta = [cnfl : ConfidLevels, intl : IntegrLevels],
ObjectBody = [cnfl : ConfidLevels, intl : IntegrLevels].

Auxiliary operators and functions were also identified for the selection: child element
of an object (sc(0)), set of child elements of an object (scs(0)), set of copies of an

object (scp(0)), set of child objects of a subject (sw(s)) and update the owner of a
subject (UpdateOwner(sh, sp)).

150

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa.
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162

3.3 Initialization of Initial Values

The set of current access events is empty at the initialization stage. The set objects
can also be empty at this stage. However, the set of subjects in this case must contain
at least one subject. For example, the values of the sets of subjects and objects are
initialized with model values:

502 [sid — 0,cnfl — 1,intl — 1,

cat — {"cl1","c2"}, owner — 0],
s1& [sid — 1,cnfl — L intl — 0,

cat — {"c2","c3"}, owner — 1],
00 £ [oid — 0,

meta — [cnfl — 0,intl — 0],

body — [cnfl — 0,intl — 0],

cat — {"c1","c2"},

owner — 1, (2)

grantm — {(O, " write "> , <O, "read ">},

grantb — {<O, "read ">},

incl — {},

copy — {1},

st — "work",
Init 2 AA=1{}

AS ={s0, s1}
A O ={00}.

where oid — object identifier, meta — object meta information, body — object
content, cnfl — level of confidentiality, intl — level of integrity, cat — category, st
— object state, owner — owner, incl — set of included documents, grantm — access

rights assigned to meta information, grantb — access rights assigned to the content

of an object, sid — subject identifier.

151

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

The model provides actions to create and delete subjects and objects; therefore, the
values presented in (2) only allow modeling possible states and finding errors faster.

3.4 Predicates of Actions

The following possible actions are specified in the model:
Next £ v CreateSubjectD v DeleteSubjectD

Vv ReadD v CreateObjectD
v WriteD v AppendWD

v DeleteObjectD v GrantRightsD

v RemoveRightsD v IncludeObjectD
v ExludeObjectD v ApproveObjectD
v ArchiveObjectD v CancelObjectD

v CopyObjectD,
where CreateSubjectD — create a subject, DeleteSubjectD — delete a subject,
ReadD - read, WriteD — write, AppendWD - write at the end ("blind" writing),
CreateObjectD — create an object, DeleteObjectD — delete an object,
GrantRightsD — assign access rights, RemoveRightsD — remove access rights,
IncludeObjectD — include an object to an object, ExludeObjectD — exclude an
included object, ApproveObjectD — approve an object (document),
ArchiveObjectD — archive an object (document), CancelObjectD — cancel the
action of an approved object (document), CopyObjectD — copy an object

(document).

Taking the example of the action presented in (3), one can consider the order in which
the necessary pre-conditions and post-conditions are specified. Pre-conditions are
predicates, the execution of which is necessary to ensure the safety of an action. Post-
conditions determine how model variables may be changed according to the results
of an action.

The Read(s,o,r,op) action is performed by s (subject) in relation to o (object)
with the »="read"right and the specific component of the meta information
document (op ="meta") or its content (op ="body"). The action in the model

defines the following post-conditions: the current access to the set of access events is
added (A" = AU {(s.sid,0.0id,r,op)}) and sets of subjects and objects remain as

unchanged (UNCHANGED(S, O)).

152

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa. Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162 pp. 147-162

The ReadD action imposes requirements to account all possible states of the model CopyObject(s,0,id) 2= A 0'= 0 U {[oid — id,

(FreR:3se€S:30 € O:FJop € ObjectParts) and to verify the necessary safety meta — [enfl — ometa.cnfl,

predicates of the execution of the action (pre-conditions).

ReadD = 3r € Rights : intl — o.meta.intl],
IseS: body — [cnfl — o.body.cnfl,
JoeO: intl — o.body.intl],

Jop € ObjectParts : owner — s.5id,

Ar="read" grantm — o.grantm,

Ao.cat C s.cat grantb — o.grantb,

AV Aop ="meta" cat — o.cat,

A s.enfl 2 o.meta.cnfl 3) incl — o.incl,

AV{{s.sid, ry} < o.grantm st — "approved",

v o.owner = s.sid copy +— {0.0id}]}
v Aop ="body" ANA'= AU {(s.sid,o.0id," copy",id)}
A s.enfl 2 o.body.cnfl A UNCHANGED(S)
. A
Av{{s.sid, r)} < o.grantb CopyObject =)
v 0.owner = s.sid Ises:
A Read(s,o0,r,0p) ANO = {}
Important ones are checks of confidentiality labels (s.cnfl > o.meta.cnfl and Ao € O: no.owner = s.sid
s.cnfl 2 o.body.cnfl), as well as checks of categories as a part of mandatory Ao.dncl = {}
confidentiality monitoring (o.cat s.cat). It then checks the condition if s (subject) Ao.st = "approved"
has the 7 access right to o (object) depending on op ((ssid,r) < o.grantm or
. A S.cat C o.cat
(ssid,r) < o.grantb).
A s.cnfl = o.meta.cnfl
It is also possible that the subject s is the owner of the object o ; in this case, the A s.intl > o.meta.intl

requirement to have a right in the set of access rights to the object is not imposed; the
owner has full rights (0.owner = s.sid).

Consider also the action to create a copy of the CopyObjectD object in (4). A s.intl 2 0.body.intl
A Cardinality(scp(0)) < 2

A Jid € ObjectIDs :

A s.cnfl = o.body.cnfl

AVYooeO:
153 154 Aid # 0o.0id
A CopyObject(s, 0,id)

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa.
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

The CopyObject(s ,o0,id) is performed by s (subject) in relation to o (object). As a

parameter, the identifier is also passed for the object being created, the selection of
which is carried out taking into account the requirement for the unique identifiers of
all objects (3id € ObjectIDs : Yoo € O : id # 00.0id). In this action, a new object is

added to a set of objects possessing the attributes of the o original object with the
exception of the copy field, in which it is indicated which object is a copy of this

object. It also adds the current access to the set of access events and indicates that the
set of subjects does not change when performing this action.

The CopyObjectD imposes requirements to account all possible states of the model
(35 €S:0#{} Ado € O) and to check the necessary pre-conditions:

e the subject is the owner of the object (0.owner = s.sid);

e the object has no included objects (o.incl = {});

e the object is in an "approved" state (o.st ="approved");

e subject categories are a subset of object categories (s.cat < o.cat);

e the privacy level of the subject is equal to the privacy level of the object (
s.cnfl = o.meta.cnfl A s.cnfl = 0.body.cnfl);

o the level of integrity of the subject is greater than or equal to the level of
integrity of the object (s.intl > o.meta.intl A s.intl > o.body.intl);

e the number of copies of the object does not exceed the specified value (
Cardinality(scp(0)) < 2);

e the created object must have a unique identifier.

3.5 Model invariants

In addition to specifying the pre- and post-conditions in the model, it is possible to
set invariants for global properties, which are mandatory for all states of the model.
The basic and generally accepted invariant is an invariant of types in (5).

It verifies that all fields match all objects and also checks the conformity of the type
of all subjects, as well as it checks the uniqueness of all identifiers of subjects and
objects.

155

ObjTypelnv =
AYo € O: Ao.oid € ObjectIDs
A o.meta € ObjectMeta
A o.body € ObjectBody
A o.owner € SujectIDs
AH{o.ncly < SUBSET ObjectIDs
A{o.copy} < SUBSET ObjectIDs
A o.st € ObjectStates
Ao.cat < SUBSET Categories
Typelnv 2 A S Subjects &)
A ObjTypelnv
AVsne S:IF3smeS:Ansm+sn
A sn.sid = sm.sid
THEN FALSE
ELSE TRUE
AVoneO:1Fdome O: Aom # on
A on.oid = om.oid
THEN FALSE

ELSE TRUE
The second invariant specified in the model is the safety invariant in (6). It checks the
following conditions:
o the level of confidentiality of object meta information does not exceed the
level of confidentiality of the content of the object (
o.meta.cnfl < o.body.cnfl);

e the integrity level of object meta information is equal to the integrity level
of object content (o0.meta.intl = o.body.intl);

o if the object contains an included object, then the set of access rights to the
parent object is a subset of access rights to the child object, and the state of
the parent object is equal to the state of the child one (
o.grantm C oi.grantm A o.grantb C oi.grantb A o.st = o.ist)

>

156

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa.
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

e the number of included objects does not exceed the specified value (
Cardinality(scs(0)) <1):
e the number of copies of the object does not exceed the specified value (
Cardinality(scp(0)) <2):
o if the subject is the owner of the object, the rights for it are not assigned,
because the subject has full rights (

—o.grantm < (s.sid x Rights) A —o.grantb < (s.sid x Rights)):

e if the object is in the "archived" or "canceled" state, then it is forbidden to
assign the right to '"record" to any of the subjects (

o.grantm N (SubjectIDs x {" write"}) # {} v o.grantb N (SubjectIDs x {" write"}) # {}

).
The execution of invariants for all states of the model provides the proof of the
following theorem (7) regarding the specification of the model (1) and the invariants
(5), (6):
Theorem. Spec =(Typelnv A Safety) . @)

3.6 Model verification

The significant limitation of the approach to the verification based on the
ModelChecking method is the need to check all possible model states. That is, if one
specifies any conditions for countable sets, for example, sid € Nat or oid € Nat
the verification process does not end, because the number of model states will also be
countable. Therefore, in the specification, model values were used to reduce the time
required for model verification.

The verification of the developed model was performed using the TLC2 tool version
2.13 [27]. Thus, the time spent on verification was about 2835 minutes (more than 47
hours) on the server with the Ubuntu 16.04 operating system, Intel Xeon E5-2620 v2
24 cores 2.10 GHz and 32 GB of RAM. 16,284,800,554 states were verified with the
average system performance of 5,743,616 states per minute.

4. Conclusion

The developed model can be used to set policies for controlling access to computer
system resources, where information of various confidentiality categories, as well as
various levels of confidentiality and integrity, circulates. The TLA + language
notation used in the model has sufficient flexibility and expressive capabilities for
solving a wide range of modeling problems in computer security. We should note that
the requirements for the absence of covert timing channels in this model were not
taken into account; that is the direction for further research.

157

Safety £ AVo € O : A o.meta.cnfl < o0.body.cnfl
A o.meta.intl = o.body.intl
AlFo.incl # {}
THEN Vi € o.incl :
AdoieO:
A oi.oid # o.0id
No.oid =i
A o.grantm C oi.grantm
A o.grantb c oi.grantb
A 0.5t = oi.st
ELSE TRUE
A Cardinality(scs(0)) <1
A Cardinality(scp(0)) £ 2 (6)
AdseS:
Ao.owner = s.sid
AIF o.grantm # {}
THEN —o.grantm c ({s.sid} x Rights)
ELSE TRUE
AIFo.grantb # {}
THEN —o.grantb c ({s.sid} x Rights)
ELSE TRUE
A—Jo € O:Avo.st ="archived"
v o.st ="cancelled"
Avo.grantm N (SubjectIDs x {" write"}) # {}

AV o.grantb N (SubjectIDs x {" write"}) # {}

158

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa.
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162

References

[1].

[2].

[8].

[10].

[11].

[12].

[13].

[14].
[15].
[16].

[17].

Devyanin P.N. On the problem of representation of the formal model of security policy
for operating systems. Trudy ISP RAN/Proc. ISP RAS. vol. 29, issue 3, 2017, pp. 7-16 (in
Russian). DOI: 10.15514/ISPRAS-2017-29(3)-1.

Devyanin P. N. Approaches to formal modelling access control in postgresql within
framework of the mrosl DP-mode. PDM. Prilozhenie/Applied Discrete Mathematics.
Supplement, no. 10, 2017, pp. 111-114 (in Russian.) DOI: 10.17223/2226308X/10/44.

. Devyanin P. N. System administration in MROSL DP-model. . PDM/Applied Discrete

Mathematics. Supplement, 2013, no 4, pp. 22-40 (in Russian).

. Devyanin P. N. Security violation necessary conditions for time information flows in

MROSL DP-model. . PDM. Prilozhenie/Applied Discrete Mathematics. Supplement, no
8, 2015, pp. 81-83 (in Russian) DOI: 10.17223/2226308X/8/30.

. Devyanin P. N. About results of designing hierarchical representation of mrosl DP-model.

PDM. Prilozhenie/Applied Discrete Mathematics. Supplement, 2016, no 9. pp. 83-87 (in
Russian) DOI: 10.17223/2226308X/9/32.

. Devyanin P. N. The level of negative roles of the hierarchical representation of MROSL

DP-model. PDM/Applied Discrete Mathematics, 2018, no 39, pp. 58-71 (in Russian) DOI:
10.17223/20710410/39/5.

. P.N. Devyanin et al. Modeling and verification of security policies for access management

in operating systems. ISP RAN, 2018, 181 p. Available at:
http://www.ispras.ru/publications/security policy modeling_and_verification.pdf (in
Russian)

Jackson D. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2012,
376 p.

. Abrial J.-R. The B-book: Assigning Programs to Meanings. Cambridge University Press,

1996, 779 p.

Jean-Raymond Abrial. Modeling in Event-B. System and Software Engineering.
Cambridge University Press, 2010.

P.N. Devyanin, V. V. Kulyamin, A.K. Petrenko, A.V. Khoroshilov, 1.V. Shchepetkov.
Comparison of specification decomposition methods in Event-B. Programming and
Computer Software, vol. 42, no. 4, 2016, pp. 198-205. DOI:
10.1134/S0361768816040022.

Jones C. B. Systematic Software Development Using VDM (2nd Ed.). Prentice-Hall, Inc.,
1990, 333 p.

Singh M., Sharma A. K., Saxena R. Formal Transformation of UML Diagram: Use Case,
Class, Sequence Diagram with Z Notation for Representing the Static and Dynamic
Perspectives of System. Proc. of the International Conference on ICT for Sustainable
Developmen, 2016, pp. 25-38, DOI: 10.1007/978-981-10-0135-2_3.

Lamport L. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst, vol. 16,
no. 3, 1994, pp. 872-923.

Lamport L. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

L. Lamport et al. Specifying and verifying systems with TLA+. Proc. of the 10th ACM
SIGOPS European Workshop, 2002, pp. 45-48.

Lamport L. The PlusCAL Algorithm Language. Lecture Notes in Computer Science, vol.
4229, 2006, pp. 23-23. DOI: 10.1007/11888116_2.

159

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

[18]. Devyanin P. N. Security conditions for information flows by memory within the mrosl
DP-model. PDM. Prilozhenie/Applied Discrete Mathematics. Supplement, issue 7, 2014,
pp. 82-85 (in Russian).

[19]. Denis Cousineau et al. TLA + Proofs. Lecture Notes in Computer, vol. 7436, 2012, pp.
147-154. DOI: 10.1007/978-3-642-32759-9_14.

[20]. Kaustuv Chaudhuri et al. A TLA+ Proof System. In Proc. of the Combined KEAPPA -
IWIL Workshops, 2008, pp. 17-37, URL: http://ceur-ws.org/Vol-418/paper2.pdf.

[21]. Merz S., Vanzetto H. Encoding TLA+ into Many-Sorted First-Order Logic. In Proc. of
the 5th International Conference on Abstract State Machines, 2016, pp. 54-69.

[22]. Xinwen Zhang et al. Formal Model and Policy Specification of Usage Control. ACM
Transactions on Information and System Security, vol. 8, no. 4, 2005, pp. 351-387. DOI:
10.1145/1108906.1108908.

[23]. Gouglidis A., Grompanopoulos C., Mavridou A. Formal Verification of Usage Control
Models: A Case Study of UseCON Using TLA+. In Proc. of the 1st International
Workshop on Methods and Tools for Rigorous System Design, 2018, pp. 52-64.

[24]. Stirling C. Modal and temporal logics. LFCS, Department of Computer Science,
University of Edinburgh, 1991.

[25]. McMillan K. L. Eager Abstraction for Symbolic Model Checking. Lecture Notes in
Computer Science, vol. 10981, 2018, pp. 191-208. DOI: 10.1007/978-3-319-96145-3 11.

[26]. Storey V. C., Song I.-Y. Big data technologies and Management: What conceptual
modeling can do. Data & Knowledge Engineering, vol. 108, 2017, pp. 50-67. DOI:
10.1016/j.datak.2017.01.001.

[27]. Chris Newcombe et al. How AmazonWeb Services Uses Formal. Communications of the
ACM, vol. 58, no. 4, 2015, pp. 66-73.

Cneuundmkauma mogenm ynpaBneHus A4OCTYNOM Ha A3blke
TemMnopanbHON NOruku gencreumn Jlamnopra

A. B. Kozauok <a.kazachok@academ.mks.rsnet.ru>
Axademus Dedepanvroui cyscowvl oxpanst Poccutickoi gpedepayuu,
302015, Poccus, . Opén, yn. [lpubopocmpoumenvras, 0. 35

AHHOTamms. B craTthe IpeicTaBiIeHO ONMCAHME MOJEIH YIPABIEHHS JOCTYIIOM Ha SI3BIKE
TEMIIOPAILHON JIOTUKK JeucTBHi JIoMropTa, 00ecreunBaromC BBIMOJHCHNE TPeOOBaHUIT
MaHJIaTHOTO KOHTPOJIS LIEJIOCTHOCTH M KOH(QHICHIMAIBHOCTH C y4eTOM HH(POPMAILMOHHBIX
MOTOKOB 10 MaMsATH. OTINNYUTENBHON 0COOEHHOCTBIO MOJEIH SIBISIETCS Y4eT 0COOEHHOCTEN
JKM3HEHHOTO IIMKJIA DJIIEKTPOHHBIX JOKYMCHTOB (3aJaHHS IpaB K MeTanH(OpPManuH H
COAEPKUMOMY JOKYMEHTA OTIEIBbHO, OTPAaHWIEHHE YHCIIA KONMUH AOoKyMeHTa). [l 3amanus
MOJIETIM YIpaBIEHHS JOCTYIOM OBII BBIOpaH S3BIK TEMIOPAJIBHOW JIOTMKU JEHCTBUM
JI>mriopTa, TOCKOJIBKY €ro HOTaIMs NpEeACTaBisIeTcss Hanboee OJIM3KON K OOMIEIPHHSATOH
MaTeMaTH4YeCKOi, BBIpa3UTeIbHbIE BO3MOKHOCTH M HHCTPYMEHTAJIBHBIE CPE/ICTBA ITO3BOJISIIOT
OIMCHIBATh U BepU(HIMPOBATH CUCTEMBI, 331aHHBIC B BU/Ie KOHEYHBIX aBTOMATOB. B Monenn
OIIpe/IeNICHBI CIIeyIOIINe JeHCTBUS: CO3JaHNe/yIaleHne CyObeKTa, YTEHHE, 3aIMCh, 103aIUCh
("cnemasi" 3ammch), co3maHue/ynaneHHe oObEKTa, Ha3HAUCHHE/yNaJIeHHE MpaB IOCTYyIa,
BIIOXKCHHE O0OBEKTa B OOBEKT, MCKIIOUCHHE BIOKEHHOTO OOBEKTa, YTBEp)KICHHE OOBEKTa
(moxymeHTa), oTmpaBka 0OBEKTa (JOKyMEHTa) B apXHB, OTMECHA NCHCTBHUS yTBEPIKACHHOTO
0o0BeKTa (IOKyMeHTa), KOMpOoBaHUue 00beKTa (OKyMeHTa). Takike ompeneneHsl CIeayomue
HMHBAPHUAHTH: IIPOBEPKH THUIIOB (BKJIIOYAeT B ce0s NPOBEPKY COOTBETCTBHUS BCEX IIOJICH

160

Ko3zauox A.B. Crienndukanis MOZie M yIpaBJICHHS JOCTYIIOM Ha s3bIKE TEMITOPAIBHOM JIOTHKHU AeiicTBril JIamnopTa.
Tpyowr UCII PAH, tom 30, Beim. 5, 2018 r., ctp. 147-162

00BEKTOB, Takke MPOBEPKY COOTBETCTBHS THIy CyOBEKTOB M IPOBEPKY YHUKAIHHOCTH
HACHTUPUKATOPOB CYOBEKTOB M OOBEKTOB) M NPOBEPKM 0€30MacHOCTH (BKIIOYACT B ceOs
IIPOBEPKY METOK KOH(MHUICHIIMATEHOCTH U IIEJIOCTHOCTH B3aHMOJCHCTBYIOIINX CyOBEKTOB U
00BEKTOB, a TAKXKE KOPPEKTHOCTH MPOLIEAYPHI HA3HAUEHHUS [IPaB JOCTYTIa).

KiroueBble cjoBa: Mozenu 0€30MaCHOCTH, KOMIIBIOTEPHBIE CHUCTEMBbI, BepH(MHKaLu,
MOJICTUPOBAHUE, TEMIIOpaJIbHAs JIOTHKA, TIOJIUTHKA OE30IIaCHOCTH, YIIPABICHHE JOCTYIIOM.

DOI: 10.15514/ISPRAS-2018-30(5)-9

Jst mutupoBanus: Kozauox A.B. Crienndukaryst MoIeny yIpaBiIeHUs JOCTYIIOM Ha SI3bIKE
TemnopasibHoM noruku aeiicreuii Jlsmnopra. Tpynst UCIT PAH, Tom 30, Beim. 5, 2018 ., c1p.
147-162 (na anrnuiickoMm sizeike). DOI: 10.15514/ISPRAS-2018-30(5)-9

Cnucok nutepaTtypbl

[1]. Aepsuur ILH. O mpoGmeme mnpencraBieHus (OPMaIbHOM MOJCIH MOJIUTHKU
6e3omnacHocTH onepanuoHHbix cucreM. Tpynst UCIT PAH, Tom 29, Beim. 3, 2017 T., cTp.
7-16. DOI: 10.15514/ISPRAS-2017-29(3)-1.

[2]. AeBanun I1.H. Peanuzanus HeBBIPOKACHHOHN PEIIETKH YPOBHEH LIETOCTHOCTH B paMKax
nepapxmdeckoro npeacrapiaeauss MPOCII Al1-monemu. I1/IM. [punoxenne, Ne 10, 2017
r., ctp. 111-114. DOI: 10.17223/2226308X/10/44.

[3]. Aepanun IL.H. AQMuHHCTpUpOBAaHUE CHCTEMbl B paMKaX MAaHAATHOH CYIHOCTHO-
ponesoit JII-Monenu ympaBieHUs TOCTYIIOM M MH(pOPMAanMOHHBIMH HoTokamMu B OC
cemeiicta Linux. I[TJIM. [punoxenune, Ne 4, 2013 r., ctp. 22-40.

[4]. Hepsnun I1.H. Heobxoxumble ycinoBus HapymieHHs 0e301acHOCTH WH(OPMAaIMOHHBIX
1oTokoB 110 Bpemenu B pamkax MPOCII AI1-monenu. ITIJIM. IIpunoxenue, Ne 8, 2015 r.,
ctp. 81-83. DOI:10.17223/2226308X/8/30.

[5]. AeBsnun I1.H. O pesynpratax popmupoBaHus nepapxudeckoro npeacrasieHns MPOCII
Oll-momemn. IIJIM. Ilpunoxenme, Ne 9, 2016 r., ctp. 83-87. DOIL
10.17223/2226308X/9/32.

[6]. depanun I1.H. Yposens 3anpemaromux poiei uepapxudeckoro npegcrasienus MPOCII
JTl-monenn. IIAM, Ne 39, 2018 r., ctp. 58-71. DOI: 10.17223/20710410/39/5.

[7]. IILH. HeBsun u np. MopenupoBaHue W BepUHKANUSA MOJIUTHK 0€30MacHOCTH
yNpaBleHHUss JOCTYIOM B ONEPAlMOHHBIX cuUcTeMaX. MHCTUTYT —CHCTEMHOro
nporpamMmupoBanuss uM. B. II. lBamnukoBa PAH, 2018, 181 c¢. URL:
http://www.ispras.ru /publications/2018/security_policy modeling and verification.

[8]. Jackson D. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2012,
376 p.

[9]. Abrial J.-R. The B-book: Assigning Programs to Meanings. Cambridge University Press,
1996, 779 p.

[10]. Jean-Raymond Abrial. Modeling in Event-B. System and Software Engineering.
Cambridge University Press, 2010.

[11]. P.N. Devyanin, V. V. Kulyamin, A.K. Petrenko, A.V.Khoroshilov, 1.V. Shchepetkov.
Comparison of specification decomposition methods in Event-B. Programming and
Computer Software, vol. 42, no. 4, 2016, pp. 198-205. DOI:
10.1134/S0361768816040022.

[12]. Jones C. B. Systematic Software Development Using VDM (2nd Ed.). Prentice-Hall, Inc.,
1990, 333 p.

161

Kozachok A.V. TLA+ based access control model specification. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018,
pp. 147-162

[13]. Singh M., Sharma A. K., Saxena R. Formal Transformation of UML Diagram: Use Case,
Class, Sequence Diagram with Z Notation for Representing the Static and Dynamic
Perspectives of System. Proc. of the International Conference on ICT for Sustainable
Developmen, 2016, pp. 25-38, DOI: 10.1007/978-981-10-0135-2_3.

[14]. Lamport L. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst, vol. 16,
no. 3, 1994, pp. 872-923.

[15]. Lamport L. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

[16]. L. Lamport et al. Specifying and verifying systems with TLA+. Proc. of the 10th ACM
SIGOPS European Workshop, 2002, pp. 45-48.

[17]. Lamport L. The PlusCAL Algorithm Language. Lecture Notes in Computer Science, vol.
4229, 2006, pp. 23-23. DOI: 10.1007/11888116_2.

[18]. Hemsinun I1. H. YcnoBus 6e3omacHocTr HHGOPMALIMOHHBIX HOTOKOB IO MAMSTH B paMKax
MPOCII All-monenu. ITAM. ITpunoxxenue, Ne 7, 2014 r., ctp. 82-85.

[19]. Denis Cousineau et al. TLA + Proofs. Lecture Notes in Computer, vol. 7436, 2012, pp.
147-154. DOI: 10.1007/978-3-642-32759-9_14.

[20]. Kaustuv Chaudhuri et al. A TLA+ Proof System. In Proc. of the Combined KEAPPA -
IWIL Workshops, 2008, pp. 17-37, URL.: http://ceur-ws.org/Vol-418/paper2.pdf.

[21]. Merz S., Vanzetto H. Encoding TLA+ into Many-Sorted First-Order Logic. In Proc. of
the 5th International Conference on Abstract State Machines, 2016, pp. 54-69.

[22]. Xinwen Zhang et al. Formal Model and Policy Specification of Usage Control. ACM
Transactions on Information and System Security, vol. 8, no. 4, 2005, pp. 351-387. DOI:
10.1145/1108906.1108908.

[23]. Gouglidis A., Grompanopoulos C., Mavridou A. Formal Verification of Usage Control
Models: A Case Study of UseCON Using TLA+. In Proc. of the 1st International
Workshop on Methods and Tools for Rigorous System Design, 2018, pp. 52-64.

[24]. Stirling C. Modal and temporal logics. LFCS, Department of Computer Science,
University of Edinburgh, 1991.

[25]. McMillan K. L. Eager Abstraction for Symbolic Model Checking. Lecture Notes in
Computer Science, vol. 10981, 2018, pp. 191-208. DOI: 10.1007/978-3-319-96145-3 _11.

[26]. Storey V. C., Song L.-Y. Big data technologies and Management: What conceptual
modeling can do. Data & Knowledge Engineering, vol. 108, 2017, pp. 50-67. DOI:
10.1016/j.datak.2017.01.001.

[27]. Chris Newcombe et al. How AmazonWeb Services Uses Formal. Communications of the
ACM, vol. 58, no. 4, 2015, pp. 66-73.

162

