
163

Formalizing Metamodel of Requirements
Management System

1D.S. Kildishev <kildishev@ispras.ru>
1 2 3 4A.V. Khoroshilov <khoroshilov@ispras.ru>

1 Ivannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

3 Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia

4 Higher School of Economics.
20, Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract. Requirements play an important role in the process of safety critical software devel-
opment. To achieve reasonable quality and cost ratio a tool support for requirements manage-
ment is required. The paper presents a formal definition of a metamodel that is used as a basis
of Requality requirements management tool. An experience of implementation of the meta-
model is discussed.

Keywords: Requirement, model, requirements management

DOI: 10.15514/ISPRAS-2018-30(5)-10

For citation: Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements
Management System. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 163-176.
DOI: 10.15514/ISPRAS-2018-30(5)-10

1. Introduction
The development of complex systems is always a sophisticated task. The develop-
ment of complex safety-critical systems, where the cost of errors is especially high,
is particularly complicated. Modern best practices suggest that precise and accurate
requirements management is an important element to solve that task.
Requirements managements in the context of safety-critical system development in-
clude the following aspects:

• building a catalogue of requirements;
• traceability links to sources of requirements;

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

164

• traceability links from other development artefacts like tests and code to re-
quirements;

• configuration and version management;
• change management including change impact analysis.

The paper presents a formal definition of a metamodel that is used as a basis of
Requality requirements management tool that is aimed to cover all the aspects. Im-
plementation details of the metamodel in the tool are also discussed and future direc-
tions are considered.

2. Related works
The problem of requirements management is not a new one. This activity was known
as a very important one for years. As an example we may cite a publication from
1997:
“The inability to produce complete, correct, and unambiguous software requirements
is still considered the major cause of software failure today” [1].
But the requirements engineering task is still the subject of different investigations.
Some of them defines a methodology [2], a model [3] or a framework [4]. Also, there
are papers presenting development story of some tools, like [5].
Some papers describe both requirements model and its application in a specific tool.
For example [6] designs a tool for management of requirements in form of specific
models or [7] that defines some details about a feature management tool for product
lines. Another paper [8] defines requirements as constraints and examine core con-
cepts related to its implementation in a real tool.
There are many commercial requirements management tools with a little information
about architecture and implementation details. There only a few open source tools are
known and cited in publications like ProR [9] or ReqLine [10].
None of the papers on the tools discusses its core model in a formal way. Some ap-
proaches and models are listed in [11] but it specifies mostly methodological aspects.

3. Base model

3.1 Preliminaries
The process of software development can be made in different ways. There are some
general views on requirements management tool’s functions but the set of require-
ments for this tool in specific areas may be different.
One of the ways to deal with such problem is to develop a model for that tool. This
approach can be found in [7] or [8]. The model helps to define core concepts of the
tool and prove some theorems over its functions.
We need to provide some terminology before starting a model. First, we will define
what the requirement is. In this paper, requirement means a limitation or definition
of some system’s or component’s functional. For our model requirements are unique

Кильдишев Д.С., Хорошилов А.В. Формализация метамодели системы управления требованиями. Труды ИСП
РАН, том 30, вып. 5, 2018 г., стр. 163-176

165

objects that may have a specific description written by natural language and are placed
in some tree structure defined below.

3.2 Base model
Definition 1. A tree G is a triple (V, E, r0), where:

• V - a set of vertices.

• E⊂V xV - a set of edges that is an asymmetrical relation on V.

• r0∈V - a root of the tree.
• There are no incoming edges for r0 and there are no more than one incoming

edge for the other vertices.
• All vertices are reachable from r0.

If (v1, v2) ∈ E then v1 is denoted as a parent(v2), while v2 is called a child of v1. We
define relation reachableE(v1, v2) as a transitive and reflexive closure of the relation
E.
Definition 2. Attributed tree AT = (G, Key, Value, attrs) consists of:

• a tree G = (V, E, r0);
• a set of attribute keys Key;
• a set of attribute values Value;
• a functional relation attrs: V → (Key → Value) that provides each vertex

with a set of attributes.
A set of all possible attributed trees is denoted as ATrees.
An attributed tree is a convenient framework to represent requirements [12] with the
following semantics. If a vertex v ∈ V represents a requirement for a target system
and there are children v1, … vn of v, then the children represent a decomposition of
the requirement v. In other words, if a system satisfies to requirement v then it satis-
fies to all requirements v1, … vn and vice versa.
Attributes of vertices contain various information about the requirements, for exam-
ple a unique identifier, description of the requirements in natural language, its repre-
sentation in a formal notation, version, etc.
An interesting particular case is the attributes, whose value is a vertex v ∈ V or a set
of vertices vs ⊆ V. It allows to define and to manage relations between different ver-
tices. For example, such attributes can be used to represent traceability links between
high level and low level requirements. Formally, this case is achieved if V ∪ (V) ⊆
Value.

4. Declarative model

4.1 The extension of the base model
The base model of requirements catalogue is an attributed tree, where each require-
ment has a particular set of attributes. This model is convenient for analysis of the

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

166

catalogue, e.g. for formal analysis, analysis of test coverage, traceability analysis, etc.
At the same time, it is difficult to manage such model manually because there are
usually many interdependencies between elements and its attributes. Here and after
term vertex (element of set V) and elements of requirements catalogue are used inter-
changeably.
That is why we introduce a declarative model of requirements catalogue that allows
us to automate the handling of such dependencies. The purpose of the declarative
model is to store requirements catalogue in more compact and manageable way.
The declarative model is defined stepwise. Each step is accompanied by definition of
the transformation of the declarative model to the raw basic model.

4.2 Predicates
If requirements are developed for a product line, there is a number of requirements
shared between different variations of the product. A natural wish is to have a single
requirements catalogue for the product line and the ability to build a specific one for
a particular version of the product. That means there is a need to delete a subset of
requirements from the catalogue if the subset is not applicable to the target product.
The similar situation happens when a catalogue is used to represent requirements of
several revisions of a standard or to represent requirements of a standard with optional
elements.
To introduce such ability we propose to choose especial key predicate ∈ Key, whose
values are boolean. If an element has attribute predicate with value false, this element
and all its children are removed from the catalogue during transformation.
The first declarative model DM1 is an attributed tree ((V, E, r0), Key ⊔ {predicate},
Value, pattrs) that is transformed to the base model ((V', E', r0), Key, Value, attrs)
according the following rules:

• V' = {v ∈ V: ∀ v' ∈ V reachableE(v',v)
 predicate ∉ pattrs(v') ∨ pattrs(v')(predicate) ≠ false };

• E' = E ∩ (V' × V');
• ∀ v∈V' attrs(v) = {(k,val)∈pattrs(v): k ≠ predicate}

4.3 Calculated attributes
It is an often situation when attribute value depends on values of the other attributes
of the same element or even on attributes of the other elements. To express such de-
pendencies explicitly we propose the second declarative model DM2 that is an at-
tributed tree (G, Key, FValue, fattrs), where

• FValue = Func × Value;
• Func = ATrees × V × Key × Value → Value.

The declarative model DM1 corresponding to the model DM2 is an attributed tree (G,
Key, Value, attrs):
∀ v ∈ V (k,val) ∈ attrs(v) iff

Кильдишев Д.С., Хорошилов А.В. Формализация метамодели системы управления требованиями. Труды ИСП
РАН, том 30, вып. 5, 2018 г., стр. 163-176

167

 ∃ (k, (func,fval)) ∈ fattrs(v): val = func(AT, v, k, fval)
To build such requirements model it is required to solve a set of equations defined by
fattrs. A simple approach is to apply fixed point iteration, while some additional im-
plementation details will be considered in section V. There are declarative models
that define a set of equations with no solutions or with non-unique solutions. A simple
but reasonable limitation that allows avoiding such models is a prohibition of cyclic
dependencies between attributes.
A particular case when an attribute has a constant value val is represented in the de-
clarative model DM2 as a pair (prj4, val), where prj4 is a projection function by the
fourth argument: prj4(AT, v, k, val) = val. Please note that in DM2 predicate is con-
sidered as a regular element of the set Key.

4.4 Attribute scope
Another often situation happens when an attribute is applicable to the whole subtree
and it has the same value for all elements. Or a similar case is when an attribute is
applicable to all children of the particular element.
To handle such situations we propose the third declarative model DM3 that is an at-
tributed tree (G, Key, SValue, sattrs), where SValue = FValue × Scope, Scope =
{SL, SDC. SS} with an element having the following semantics:

• SL – an attribute is available only in the element where it is defined.
• SDC – an attribute is available in the element where it is defined and in all its

direct children.
• SS – an attribute is available in the element where it is defined and in all its

successors.
An example of attribute scope can be seen on Fig. 1. White rectangles are Vs. Arrows
mean child-parent relation. Attribute with some scope is defined in r0. Grey rectangles
represent different possible scopes of A and the subtrees where it will be accessible.
\A transformation of declarative model DM3 to the model DM2 is straightforward:
DM2 is an attributed tree (G, Key, FValue, fattrs), where fattrs(v) = {k → fval} such
that

• (1) {k → (fval, anyscope)} ∈ sattrs(v)
• (2) {k → (fval, SDC)} ∈ sattrs(parent(v)) if rule (1) is not applicable,
• (3) {k → (fval, SS)} ∈ sattrs(v') if rules (1) and (2) are not applicable ∧

reachableE(v',v) ∧
∀ v'' ∈ V ∀ val ∈ Value (reachableE(v'',v) ∧ reachableE(v',v'')) ⇒ {k → (val, SS)} ∉
sattrs(v'').

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

168

Fig. 1. Attribute scopes

It is interesting to note that nonconstant scoped attributes can get different values in
different elements because its function can depend on the vertex as a third argument.

4.5 Reuse of subtrees
The next item to consider is a situation when there are several subtrees of require-
ments that are very similar each other up to some limited number of details. In this
case, it would be ideal to have a single copy of the subtree and the ability to clone it
with some modifications. This approach is usually called reuse [13].
The fourth declarative model DM4 is an attributed tree ((V, E, r0), Key ⊔ {cp},
SValue, cpattrs) with especial key cp that satisfies the following constraints:

• ∀ v ∈ V∀ value ∈ Value∀ s ∈ Scope cp ∈ cpattrs(v) ∧ cpat-
trs(v)(cp) = ((prj4,val), s) ⇒
val∈ V ∧ ∀ v' ∈ V (v, v') ∉ E;

• E ∪ {(v, cp(v))| v ∈ CC(DM4)} does not contain loops, where CC(DM4) =
{v ∈ V| cp ∈ cpattrs(v)} and cp(v) - val∈ V from the constraint above.

The transformation of the model DM4 to the model DM3 =
((V', E', r0), Key, SValue, sattrs) is performed by the following algorithm:

1. curDM4 := DM4
2. If CC(curDM4) is empty, take DM3 = curDM4 with removing cp from the

Key set and finish.
3. Let curDM4 is ((V, E, r0), Key ⊔ {cp}, SValue, cpattrs).
4. Choose any v0 ∈ CC(curDM4) such that ∄ v ∈ CC(curDM4) reacha-

bleE(cp(v0),v). Existence of such element follows from lack of loops in E ∪
{(v, cp(v))| v ∈ CC(DM4)}.

5. Assume without loss of generality ∀ v∈V (v0,v)∉V.
6. Build newDM4 = ((V', E', r0), Key ⊔ {cp}, SValue, cpattrs'), where

• V' = V ∪ {(v0,v') | v'∈V ∧ reachableE(cp(v0),v') }
• E' = E ∪ { (v0,(v0,cp(v0))) } ∪

{ ((v0,v'), (v0,v'')) | (v',v'') ∈ E ∧
 reachableE(cp(v0),v')}

• ∀ v ∈ V\{v0} cpattrs'(v) = cpattrs(v)
• cpattrs'(v0) = {(k,val) ∈ cpattrs(v0): k ≠ cp}

Кильдишев Д.С., Хорошилов А.В. Формализация метамодели системы управления требованиями. Труды ИСП
РАН, том 30, вып. 5, 2018 г., стр. 163-176

169

• cpattrs'((v0,v')) = cpattrs(v')
Please note that newDM4 satisfies both constraints of the fourth declarative model.

7. curDM4 := newDM4 and goto step 2.
Lemma 1. The algorithm terminates for any DM4 satisfying the constraints.
The proof is based on the fact that the cardinality of CC(curDM4) is decreased every
iteration because of the choice of the v0 at step 4 that guarantees that elements with
attribute cp are not cloned, while one such element loses that attribute.
Lemma 2. The result of transformation does not depend on the order of the selection
of elements at step 4.
The idea of the proof is that transformations that can be chosen in non-deterministic
order make modifications in non-intersecting subtrees.
Interesting to note that combination of reuse and predicate transformation can be used
to define a generic subtree that is instantiated several times with different arguments
using reuse transformation and the original generic subtree is eliminated with predi-
cate transformation. Also, predicate transformation can be useful to eliminate un-
needed elements from the cloned subtrees.

5. Implementation details

5.1 Identification
One of the important aspects of requirements management is requirements identifica-
tion. One of the common approaches it to assign a unique identifier to each object,
for example, some number or string.
In addition to that it is possible to provide each element with a qualified identifier
QID defined recursively on top of identifiers ID that are unique within children of the
same parent: r0 has QID = '/ID', child v has QID = 'QID(parent)/ID'.
Let us take some example of requirements for some system. If we use QID we can
have a human-readable path for each requirement. For example, we may have an el-
ement with QID = "Functional requirements/Ports/req001". As seen from the path it
has a parent "Functional requirements/Ports/" and its ID is req001.

5.2 Calculated attributes
There are two objects related to attributes in the implementation. The first one, attrib-
ute definition A_DEF represents a pair (func,fval) from the formal declarative mode,
where func is of type ATrees × V × Key × Value → Value. The second one, attribute
A, represents a value of the attribute in the base model. A_DEF is used to calculate
an actual value A when it is required.
There are several kinds of functions supported in attribute definitions.
The first kind is the constant functions prj4 that always returns fval value stored in
attribute definitions.

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

170

The second kind is template functions that stores in fval value a string with parameters
encoded in curly brackets, e.g. "Hello, {K}". The value of the parameters to be used
for substitution is taken from attribute with the encoded name, 'K' in the example
above, of the same element.
The third kind is formula value generator that stores in fval value a string with an
expression in a subset of JavaScript language that has access to attributes of the same
element.
The fourth kind is virtual attributes that are implemented in Java. They have no stored
fval value at all, but they have access to the whole context of the element including
the complete attributed tree.
For example, Label attribute can take value of user-defined Name attribute if there is
one or return system-defined identifier otherwise. Another example could be QID that
calculates qualified identifier of the element as a concatenation via '/' of parent's QID
with a Name of the target element.
An important additional information that the tool is able extract from attribute defini-
tion is a set of attribute keys which values are required to calculate the actual value
for the given attribute by the corresponding function.

5.3 Attributes life-cycle
For each attribute stored data includes function kind and fval. The pair (funckind,fval)
is denoted A_ST. System-defined virtual attributes have no stored data, they are
added to elements on the fly.
Let us describe a common process of attributes loading for some requirement.

1. Set of A_ST is loaded from storage to A_DEFS.
2. Set of scoped attributes that are applicable to the target one is taken from its

parent and is added to A_DEFS.
3. The A_DEFS set is handled by Attribute_Calculation procedure described

below.
If attributes are changed by the user using GUI session, the tool has the same
A_DEFS set that contains a subset of changed attribute definitions. Then the tool ap-
plies the same Attribute_Calculation procedure as follows.

1. A_DEFS set is extended with attributes of the target element that depends
on any attribute already belonging to A_DEFS.

2. The order of evaluation of attributes from A_DEFS is calculated. The order
can be defined as ORDER = (K1..Kn) where Ki is the key of the attribute.

-∀Ki,Kj∈ORDER if Kj depends on Ki then i<j.
The algorithm is described in the next section.

3. For each A_DEF in the A_DEFS value of A is calculated and placed to AS.
After this procedure AS contains an actual state of attributes after provided changes.

Кильдишев Д.С., Хорошилов А.В. Формализация метамодели системы управления требованиями. Труды ИСП
РАН, том 30, вып. 5, 2018 г., стр. 163-176

171

5.4 Order extraction algorithm
As an input of order extraction, we have KEYS = (K1.. Kn) that is set of attributes
name in some random order and DEPS = (Ki → (Kj1..Kjm)) - a map of attributes
dependencies. The algorithm is as follows:

1. ORDER is set to empty collection.
2. OSET is the set of handling nodes.
3. Extract revert dependencies DEPS_R. DEPS_K=(Kj → (Ki1.. Kil)). If Ki de-

pends on Kj then DEPS_K contains Ki → Kj record.
4. Place KEYS to OSET.
5. Set flag MOD is to False.
6. In OSET look for candidate KK with DEPS_K[KK] = KSET that complies

one of following rules:
◦ KSET is empty.

OR
◦ !∃Ki∈KSET: Ki∈ OSET.

7. If KK was found then:
1. MOD set to True.
2. KK removed from OSET.
3. KK added to ORDER.

8. If MOD = True & |SET|!= 0 then go to step 4.
At the end of execution, the ORDER will contain the order in which A’s values cal-
culation.

5.5 Attribute change management
The introduction of scope and calculated attributes requires the management of at-
tributes changes to keep all dependent attributes up-to-date.
There are two possible strategies to deal with attribute updates. The first approach is
to commit all changes at runtime. The second one is to collect changes in AS and then
apply them all by request. Immediate commit is tending to be simpler but more com-
puting - intensive. Late updates require fewer calculations but need more memory.
For our tool, we use the second approach because we have large catalogues with a
possibility of complex relationships between its elements.
Late changes can be defined in form of new object — changes set CS=(K → OP, K→
AOLD, K→ ANEW) where K is the key of attribute, OP ∈ (remove, create, modify) is
the operation over attribute, AOLD is the value of attribute in AS before operation,
ANEW is the new attribute value after operation.
For attribute changes change set needs to store A_DEFS, so minimal CS = (K, K→
AOLD, K→ ANEW). To use these changes set we need to extend the model of attributes
set of A.

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

172

When all attribute modifications are collected we need to apply all that changes to
calculate actual values of attributes. It is implemented in the same way as it was de-
scribed in section V.C.
One more problem with attribute changes is that some of the changes need to be prop-
agated from one requirement to another. To deal with this problem we define a con-
cept of change propagators. If A_DEF (virtual attributes only for now) depends on
attributes from the external element it registers a function-change propagator that is
called when some change set is applied to attributes of that element. The change prop-
agator evaluates if the changes impact the target attribute and initiate its recalculation
if it is required.

5.6 Lazy loading
When we speak about a model of requirements in some common application like avi-
onics we need to take into account the number of distinct requirement. Sometimes the
number of artefacts for such models tends to be in the thousands or tens thousands.
In that case, direct management of requirements may require a lot of resources.
To solve this problem we use the lazy loading principle. That means that AT will
contain only those Vs that are requested during the usage of the model. In most cases
that means that in G we have a subtree GL∈G that contains r0 and some subtrees that
are used during the current working session.
But laziness of model leads to some difficulties. First of all, we need to overlook AT
instead of ATL if we need to assure that V with given ID exists. This problem can be
solved by caching id-related information in CacheStore that is always available.

5.7 Attribute types
 In practice, the value of an attribute may have one more property – a type. One pos-
sible set of types includes Integer, Boolean, String, Float. Also, we may define types
for Collection and Enumeration. In most cases, the value still is the simple constant.
But some attribute types cannot be defined as a single value and need to store and
manage some additional data. For example, Collection type may use specific object
LIST = (TV, V1..Vn) where TV is the type of collection's value and (V1..Vn) are the
values stored in the collection.
One more specific type is Enumeration. First, enumeration requires definitions of its
values. It can be made by means of ENUM_DEF = (VT, V1...Vn) that is similar to
LIST one. But to define an attribute with one selected enumeration value we need to
define one more object ENUM = (KB, VS) where KB is the key of A with ENUM_DEF
and VS is the selected value. But in a case we introduce an ENUM, we need to ensure
that for every ENUM we will have an AD where T = ENUM_DEF and VD will contain
VS.

Кильдишев Д.С., Хорошилов А.В. Формализация метамодели системы управления требованиями. Труды ИСП
РАН, том 30, вып. 5, 2018 г., стр. 163-176

173

5.8 References
One more problem is the implementation of relations between elements of the cata-
logue. Some tools manage them as the set of specific objects placed in the distinct set.
In our model relations are presented in form of specific attribute type REFERENCE.
For this type we introduce value object REF_VALUE (REF, V, ERR) where REF is
a string that can be resolved to V, usually containing some kind of identifier, V is the
corresponding element if there is any matched by identifier, ERR is a string with an
error message if REF cannot be resolved or contains incorrect value.
In this case, REF_VALUE initially contains only REF field. If someone requires the
result of REF_VALUE resolution then the tool tries to resolve the REF and then fills
V or ERR.
References are also required some additional handling to support its consistency. In
a case REF or target V is changed we may need to track its changes and update related
REF_VALUE.
One more specific problem is reverted links. If we have a relation V1 → V2 we may
need to know for V2 that it has a relation to V1. This kind of relations is called "reverse
references".
If links are stored in AT then we may use one more function (V2, LN) → V1 to store
reverse relations. If we define a new type of attributes or the specific state of
REF_VALUE then we face a problem of keeping it up-to-date.
In our model, we store reverts links in the cache in form of (V2, LN) → (V1… Vn)
function. That allows us to easily get revert links on V2 if the state of cache is valid.
In a case of completely loaded AT the problem is not so difficult to solve because we
always have the actual state of every V. But we cannot guaranty the V’s state in case
of a partially loaded AT that happens in case of lazy loading.
If we have some loaded ATL⊆AT, relation (V1, LN) → V2, V1∉AT∧V2∈AT then if
we need to get revert links on V2 we may need to load the whole AT to be sure that
all possible V1 were found.
In our case, this problem is solved by storing reverse links in the cache. But in this
case, we still have one necessary problem. Let us introduce some link L(V1, V2, LN).
If we already resolve this link then the record in cache tends to be present. But what
if we introduce V2 in the model when V1 is loaded and the link is resolved was not
found? The situation takes place when V2 is loaded by the lazy method, created or
modified.
In the worst case, we need to track changes of the whole AT for all links. A better
solution is to manage some kind of scope for which link tends to be resolved. That is
not implemented yet, but it is in our plans.
Relations can be used for some specific activities. One of them is changes manage-
ment. Changes management is performed when some V1 with links (L1..Ln) is
changed. In this case, some operations will be performed on V’s obtained from L1..Ln.
The nature of such operation can be different. For some tools, those Vs will be marked

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

174

in a model with the specific flag. In other cases, the models can define additional
actions depending on the kind of change.

Conclusion
We presented a formal metamodel that is used as a basis for building Requality re-
quirements management tool. We covered different difficulties related to its imple-
mentation. But the experience demonstrates that the model allows handling quite big
requirements catalogue with many relations between its elements.
The future work includes analysis and implementation of new kinds of functions for
calculated values and development of user-friendly patterns for solving common user
tasks on top of the semantics defined in the paper. Another direction is research of
possible compositions of the formal model provided by the tool and formal models
used to represent particular requirements.

Acknowledgment
This study was supported by RFBR grant #17-07-00734.

References
[1]. R. Thayer. M. Dorfman. Software Engineering. IEEE Computer Society press, 1997., 552

p.
[2]. M. Palumbo. Requirements Management for Safety Critical Systems. Available:

http://www.railwaysignalling.eu/wp-content/uploads/2015/06/Req_mgt_safety_criti-
cal_system_Mpalumbo.pdf. Accessed: 3-Apr-2018

[3]. P. Roques. Modeling Requirements with SysML. Requirements Engineering Magazine,
issue 2015-02, 2015.

[4]. Open Group Standard. Dependability through Assuredness (O-DA) Framework. The
Open Group Releases, 2013.

[5]. A. Nordin, A. Ikhwan Omar, M. Usamah Megat Mohamed Amin, N. Salleh. .Develop-
ment of scenario management and requirements tool (SMaRT): towards supporting sce-
nario-based requirements engineering methodology. International Journal of Engineering
& Technology, Vol 7, No 2.14, Special Issue 14, 2018, pp 62-65.

[6]. D. Lozhkina, S. Staroletov. An online tool for requirements engineering, modeling and
verification of distributed software based on the MDD approach. In Preliminary Proceed-
ings of the 11th Spring/Summer Young Researchers’Colloquium on Software Engineer-
ing, 2017, pp. 23-28.

[7]. T. von der Maßen, H. Lichter. RequiLine: A Requirements Engineering Tool for Software
Product Lines, Software Product-Family Engineering, 2003, Heidelberg, pp. 168-180.

[8]. N. W. Mogk. A Requirements Management System based on an Optimization Model of
the Design Process. In Proc. of the Conference on Systems Engineering Research (CSER
2014), 2014, pp 21-22

[9]. ProR Requirement Engineering Platform. [Online]. http://www.eclipse.org/rmf/pror/. Ac-
cessed: 2-Apr-2018.

[10]. ReqLine Download (ReqLine.exe). [Online]. Available: http://downloads.in-
former.com/reqline/. Accessed: 3-Apr-2018.

Кильдишев Д.С., Хорошилов А.В. Формализация метамодели системы управления требованиями. Труды ИСП
РАН, том 30, вып. 5, 2018 г., стр. 163-176

175

[11]. S. Hallerstede, M. Jastram, L. Ladenberger. A method and tool for tracing requirements
into specifications. Science of Computer Programming, vol. 82, 2014, pp. 2–21.

[12]. Alexey Khoroshilov. On formalization of operating systems behaviour verification. In
Proceedings of 11th International Conference on Computer Science and Information
Technologies (CSIT-2017), 2017, pp. 168-172.
DOI:10.1109/CSITechnol.2017.8312164

[13]. W. Frakes, C. Terry. Software Reuse: Metrics and Models. ACM Computing Surveys Vol.
28, No. 2, 1996.

Формализация метамодели системы управления
требованиями

1 Д.С.Кильдишев <kildishev@ispras.ru>
1,2,3,4 А.В.Хорошилов <khoroshilov@ispras.ru>

1 Институт системного программирования им. В.П. Иванникова РАН,
109004, Россия, г. Москва, ул. А. Солженицына, д. 25

2 Московский государственный университет имени М.В. Ломоносова,
119991, Россия, Москва, Ленинские горы, д. 1

3Московский физико-технический институт,
141700, Московская облаcть, г. Долгопрудный, Институтский пер., 9

4 Высшая школа экономики,
101000, Россия, г. Москва, ул. Мясницкая, д. 20

Аннотация. В рамках данной статьи рассматривается метамодель, лежащая в основе
системы управления требованиями Requality. Базовая модель представляет собой де-
рево, каждой вершине которого сопоставлен набор именованных и типизированных
свойств. Базовая модель проста и удобна для представления семантики набора требова-
ний, но оказывается не особо пригодной для формирования и сопровождения сколько-
нибудь сложных каталогов требований. Поэтому авторами вводится набор декларатив-
ных моделей, позволяющих описывать каталог требований более компактным образом.
При этом семантика декларативных моделей задаётся при помощи определения транс-
ляции в базовую модель. Эти возможности обеспечивают гибкий инструментарий для
компактного описания типовых наборов требований. Также в статье рассматриваются
особенности реализации представленной метамодели в системе управления требовани-
ями Requality. В заключении предлагается исследовать комбинацию представленной
модели каталога требований с формальными моделями, позволяющими описывать се-
мантику каждого требования в отдельности.

Ключевые слова: требование; модель; управление требованиями

DOI: 10.15514/ISPRAS-2018-30(5)-10

Для цитирования: Кильдишев Д.С., Хорошилов А.В. Формализация метамодели
системы управления требованиями. Труды ИСП РАН, том 30, вып. 5, 2018 г., стр. 163-
176 (на английском языке). DOI: 10.15514/ISPRAS-2018-30(5)-10

Kildishev D.S., Khoroshilov A.V. Formalizing metamodel of Requirements Management System. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 5, 2018, pp. 163-176

176

Список литературы
[1]. R. Thayer. M. Dorfman. Software Engineering. IEEE Computer Society press, 1997., 552

p.
[2]. M. Palumbo. Requirements Management for Safety Critical Systems. Available:

http://www.railwaysignalling.eu/wp-content/uploads/2015/06/Req_mgt_safety_criti-
cal_system_Mpalumbo.pdf. Accessed: 3-Apr-2018

[3]. P. Roques. Modeling Requirements with SysML. Requirements Engineering Magazine,
issue 2015-02, 2015.

[4]. Open Group Standard. Dependability through Assuredness (O-DA) Framework. The
Open Group Releases, 2013.

[5]. A. Nordin, A. Ikhwan Omar, M. Usamah Megat Mohamed Amin, N. Salleh. .Develop-
ment of scenario management and requirements tool (SMaRT): towards supporting sce-
nario-based requirements engineering methodology. International Journal of Engineering
& Technology, Vol 7, No 2.14, Special Issue 14, 2018, pp 62-65.

[6]. D. Lozhkina, S. Staroletov. An online tool for requirements engineering, modeling and
verification of distributed software based on the MDD approach. In Preliminary Proceed-
ings of the 11th Spring/Summer Young Researchers’Colloquium on Software Engineer-
ing, 2017, pp. 23-28.

[7]. T. von der Maßen, H. Lichter. RequiLine: A Requirements Engineering Tool for Software
Product Lines, Software Product-Family Engineering, 2003, Heidelberg, pp. 168-180.

[8]. N. W. Mogk. A Requirements Management System based on an Optimization Model of
the Design Process. In Proc. of the Conference on Systems Engineering Research (CSER
2014), 2014, pp 21-22

[9]. ProR Requirement Engineering Platform. [Online]. http://www.eclipse.org/rmf/pror/. Ac-
cessed: 2-Apr-2018.

[10]. ReqLine Download (ReqLine.exe). [Online]. Available: http://downloads.in-
former.com/reqline/. Accessed: 3-Apr-2018.

[11]. S. Hallerstede, M. Jastram, L. Ladenberger. A method and tool for tracing requirements
into specifications. Science of Computer Programming, vol. 82, 2014, pp. 2–21.

[12]. Alexey Khoroshilov. On formalization of operating systems behaviour verification. In
Proceedings of 11th International Conference on Computer Science and Information
Technologies (CSIT-2017), 2017, pp. 168-172. DOI:
10.1109/CSITechnol.2017.8312164.

[13]. W. Frakes, C. Terry. Software Reuse: Metrics and Models. ACM Computing Surveys Vol.
28, No. 2, 1996.

