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Abstract. A pure second-order scheme of quasi-characteristics based on a pyramidal stencil is
applied to the numerical modelling of non-stationary two-phase flows through porous media
with the essentially heterogeneous properties. In contrast to well-known other high-resolution
schemes with monotone properties, this scheme preserves a second-order approximation in
regions, where discontinuities of solutions arise, as well as monotone properties of numerical
solutions in those regions despite of well-known Godunov theorem. It is possible because the
scheme under consideration is defined on a non-fixed stencil and is a combination of two high-
order approximation scheme solutions with different dispersion properties. A special criterion
according to which, one or another admissible solution is chosen, plays a key role in this
scheme. A simple criterion with local character suitable for parallel computations is proposed.
Some numerical results showing the efficiency of present approach in computations of two-
phase flows through porous media with strongly discontinuous penetration coefficients are
presented.
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1. Introduction

In recent fifteen years many high-resolution numerical schemes modifying Godunov
scheme have been proposed (see, for instance, [1-5]). However, the problem of
development of high-order schemes with monotone properties in regions near the
discontinuities of solutions remains in the focus of activities for many researchers in
numerical methods for partial differential equations (PDE) and in computational fluid
dynamics (CFD). According to the well-known Godunov’s theorem, second-order
explicit monotone schemes on the fixed stencils do not exist. Up to now, two different
ways to resolve this restriction are known. The first one uses the idea of lowering the
approximation order in the narrow regions near the discontinuities of solution. In fact,
this approach has been realized in most of the modern high resolution schemes,
because they set some restrictions on the recovery functions or limiters to provide the
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monotone properties of solutions in zones where the discontinuities could arise. An
excellent analysis of this approach is presented in [3,5]. Therefore, most of high-
resolution schemes cited above are hybrid schemes, because their approximation
order is lowered in the zones near the discontinuities. Various hybrid quasi-
characteristics schemes for the solution of supersonic aerodynamics problems and
two-phase porous media problems were developed and considered in [6-11].

The second way consists in the construction of high-resolution schemes on the non-
fixed stencils. For instance, one can apply two or more high-order schemes defined
on different stencils and choose a final solution in each nodal point among admissible
solutions to provide a monotone properties in regions where the discontinuities could
arise. Such approach was considered in [12-14]. In these articles, various
quasi-characteristics schemes of the second-order were proposed and considered. All
these schemes use a combination of two second-order approximation scheme
solutions having the different dispersion properties. A special criterion according to
which, one or another admissible solution is chosen between two admissible solutions
to provide the monotone properties near the discontinuities, plays a key role in this
scheme. In [12-13], a heuristic criterion based on the third-order theoretical
estimation of the average value of the governing equation operator with respect to the
grid cell is proposed. Unfortunately, it has a non-local and directed character and
could not be easily adopted in multi-dimensional case and in parallel computations.
In [14], simpler local and non-directed heuristic criterions suitable for parallel
computations are proposed. As is shown in [12], the quasi-characteristics schemes are
more accurate than fourth-order approximation schemes in computing of the initial-
value problems for the PDE of hyperbolic type, because the quasi-characteristics
schemes are generalization of well-known back-ward characteristics schemes which
are essentially more accurate in comparison with all other well-known numerical
schemes. The reason of this consists in the naturally accurate treatment of the
characteristic properties of the governing equations by the quasi-characteristics
schemes in comparison with Godunov’s type schemes based on the conservation laws
treatment. Therefore, in recent years, various numerical schemes based on
characteristics were proposed [15-19] for the solution of initial boundary value
problems for reaction-diffusion equation and for correct setting of boundary
conditions in decomposition of such problems.

In this article, we consider the application of a new multidimensional scheme of
quasi-characteristics to the numerical simulation of two-phase flows through porous
media with strongly discontinuous penetration coefficients. This scheme
approximates a transport equation in the system of the porous media equations on the
pyramidal stencil without any splitting. A simple criterion suitable for the selection
of final solution among two admissible solutions to provide the monotone properties
of the final solution without spuriuos oscillations is proposed. Numerical results for
various ratio of penetration coefficients are presented. These results show that the
technique considered here could be efficiently used for the accurate numerical
modelling of flows through the essentially heterogeneous porous media.
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2. Governing equations, initial and boundary conditions

Let us consider the problem of a numerical simulation of two-phase flows through
essentially heterogeneous porous medium with piece-wise constant absolute
penetration factor. In the two-phase case, the governing equations [20] can be
presented in the following form with respect to the water saturation s and the pressure
p as unknown functions

s 0  kk, Op 0  kky Op

) - e () S (Z ) o, (1)
ot 0x " by Ox 0y ey Oy

O . kw ko Op, 0 ky ko Op

k(= + =) ]+ - k(—+—)=-] =0 )
0" “pw  po 0T Oy pw  fo” Oy

Here m is a porosity factor, k = k(x,y) is an absolute penetration factor of porous

m(

medium, k,, = ky,(s) and k, = ko(s) are a relative penetration factors of water and
oil, 1, and p,, are a viscosity of water and oil. Let us notice that the oil saturation s,
can be evaluated by the water saturation according to the following simple formula
So=1—35.

Since the relative penetration factors k,, and k,, are functions only of water saturation
s, then equation (1) can be presented as follows

&_( k @dk_w)ﬁs (=k @dk_w)gs_
Yy

ot My Ox ds /dx  \mpu, Oy ds

_k’u,[a(k- 8p)+ B(k 3:0)]. (3)

m L9z Ny 92/ T By \pw By

Now we see that the system of governing equations (23) is of mixed type. Equation
(3) is a nonlinear transport equation of hyperbolic type and the equation (2) is of
elliptic type. Let us consider the transport equation (3) as a main governing equation
and the elliptic equation (2) as a nonlinear restriction for coefficients of the main
governing equation. Then we can apply the quasi-characteristics technique to solve
the initial boundary-value problem for the transport equation and also on each time
level we need to solve the boundary-value problem for elliptic equation to define the
coefficients of the governing equation. In our approach, for the solution of the
boundary-value problem for the elliptic equation we use the well-known five points
finite difference conservative scheme and bi-conjugate gradient algorithm as in [7,
11].

Let us consider rectangle flow regions D = 0 <z < L, 0 < y < H divided into two
subregions D1 = 02L <z <0.8L, 0 <y < Zand D = D - D;.

The absolute penetration factor & in each subregion is a constant function, therefore
in all region we have

_ k17if (a?,y)ED,
k_{ kgzv if (zv,y)ED;. 4

Initial conditions for the transport equation (3) are
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_J 02, if 0<z<L, 0<y<H,
and the boundary conditions are
95 0, if t>0,y=0H, 0<z<0L;

oy \ (6)
s(Lyy,t)=10,4if 0<y<H, t>0.
H
D,
0.5H|
¥
D,
0 0.2L 0.5L L
X

Fig.1. Flow region

For the pressure equation (2) of the elliptic type we set a mixed Neumann and
Dirichlet boundary conditions as follows

W _0, if O<z<L,y=0,H;

dy
p=PF,if v=0,0<y<H (7)
=P if a=L,0<y<H.

Py and Qg are known parameters here. The relative penetration factors of the water
k., and oil k,, are chosen as follows

0, if s<0.1;

kw(s) =< (55%1)%, if 01<s<08; (®)
1, if s>08;
1, if s<0.1;

ko(s) =< (25=2)3, if 01<s<08; )
0, if s>0.8.

Physically, the initial boundary value problem (2-9) describes two-phase porous
media flows between two horizontal wells, where the left boundary z =0
corresponds to the production well and the right boundary x = L corresponds to the
injection well.
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3. Numerical scheme

In this section, we consider a non-splitting quasi-characteristics scheme on the
pyramidal stencil applied to the solutions of the transport equation (3). Non-splitting
scheme means that we do not use in our scheme any splitting technique for solution
of the couple system of finite difference equations approximating the governing
partial differential equation. It is very important in application to problems with
heterogeneous coefficients, because in such problems sometimes splitting leads to the
lowering of exactness of solutions. We develop this scheme with respect to the 3D

transport equation written in the generalized form as follows
ou Ju Ju

b bo— = b: 10
8t + 017 O + 02 ay 3 ( )

satisfying the following initial conditions
U(O,Z’,y) =u0(m,y) . (11)

Here u(t, z,y) is a searching function and b; = b;(t,z,y, u, gg, gZ) (i=1,2,3)
and ug(z,y) are given.

In quasi-characteristics schemes [10], we approximate the governing equation written
in the expanded characteristics form along some spatial grid lines [ (quasi-
characteristics) in (¢, x, y) space as follows

du ou dy, . Ou
(E)l-F[bl (dt)]6 +[b2_(5)l]8_y =bs . (12)

Here (%)z is a total derivative of the searching function u with respect to ¢ along
line /.
As quasi-characteristics usually are used some grid lines belonging to the considering

stencil. They should lie in close vicinity with respect to the characteristics of
governing equation, and sometimes can coincide with them.

Now we consider a uniform, for simplicity, in each direction finite-difference grid in
space (¢, z,y). We denote grid steps 7, h, and hy respectively. Let us consider a
pyramidal stencil P; P, P; Py R in the grid space. suppose that its basement P; P, P3 Py
belongs to some data layer t = ¢y and vertex R belongs to the new layer ¢ = ¢y + 7.
Coordinates of the above mentioned vertices are follows: P (to, zo + haz, Yo — hy) ,
pQ(thx0+hxay0+hy)a Pg(to,xofhx,yo+hy), P4(t07x07hxay07hy>ﬂ
R(to + 7,0, yo)- Also we take into consideration my (o, xo, yo) a center point of the
basement of the pyramid stencil and denote the nodal points corresponding to the
central points of the pyramid basement ribs as follows: m(to, o + hz, yo),
—(to, o — hay yo), n (to, o, Yo + hy), n—(to, To, Yo — hy).

We suppose that the characteristics of the transport equation going through the point
R is lying inside the considering stencil and as a quasi-characteristics we can choose
ribs P; R of the pyramidal stencil. Then approximating the expanded characteristic
form of the governing equation along these lines, we obtain
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LB 4 (b)) PR — ) (BY) PRt (13)
[(bz)PiR - w](d“) = (b3) PR,
wheret =1,2,3,4.

Fig.2. The pyramidal stencil

According to [10] we take the following approximation of the outward derivatives at
the middle layer t = Zo + 5

0 0
<g§>t-to+; = <§§>c + (@ — 20)W +d(y — o) » (14)
(5, )imtors = () + (= 90)V + d(a — o) (15)

Here we take a center point of the middle section of our stencil (to + 7,0, y0) as

the point C' (or C;) and choose values W and V' (or W; and V; ) at the middle layer
to + 5 by the formulas

_ 1rup —2u, +up,
Wi = W(mo) = g[%
Um | —2Umq+Um _ + 72un++up3] (16)
h;n2 hw2 ’
L P, —2 +u
Vi =V(mo) = %[UPZ Zm; o
i Un —2UmgFUn_ + —2um +up, ] (17)
hy? hy? :

We denote as W (mg) and V' (mg) the finite difference operators approximating the

second order derivatives of the searching function with the second order
approximation error on the appropriate stencil with middle point my .

By substitution of rela‘uons 14-17) into (13), we obtain a system of four equations
with respect to u g , (2% 720, (5y)c and d. Solving it we obtain uZ, . In non-linear case,

we need to do three iterations on nonlinear coefficients as is usually done in the
method of characteristics. We call the scheme considered above scheme 1.
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Now we construct a second scheme of the second order approximation with different
dispersive properties in comparison with scheme I. For this purpose we choose point
Cr and values Wy, Vi according to the following formulas
Zf b1($0ay07t0) Z 0 and b2($0790at0) Z 0 )
then Wi = W(P4), Vir = V(P4) ,
Cr1 = (Paz, Pay,to + 3)
if bi(x0,y0,t0) >0 and bz(zo,y0,t0) <0,
then Wi = W(Pg), Vir= V(Pg) ,
Cri = (Paz, Py, to + 3) , (18)
if b1(20,¥0,%0) <0 and ba(zo,yo,t0) <0,
then Wi = W(PQ), Vir = V(PQ) ,
Ci1 = (Paw, Pay, to + 3)
if bi(zo,y0,t0) <0 and ba(zo,y0,t0) >0,
then Wi = W(Pl), Vir= V(Pl) ,
Cr1 = (Pig, Py, to + %) -

By substitution of relations (14-15) and (18) into (13), we obtain a system of four
equations with respect to ux , (g—;‘)c, ( %Z)c and d. Solving it we obtain uL!. As was

mentioned above in non-linear case, it is necessary to do three iterations in evaluation
of ut!. We call this scheme scheme II.

In [12-13] for 2D case, it was shown that by choosing one of two non-monotonous
admissible solutions of the second order approximation with different dispersive
properties, one can construct the final solution with monotone properties. As in the
papers cited before, the criterion for the choosing the final solution is based on the
analysis of the average value of the governing transport equation operator evaluated
on each elementary mesh cell by the high order quadrature formulas. In this criterion,
the history of computations in previous grid points is taken into account and therefore
is not suitable for the parallel computations and in multi-dimensional case. For 2D
case, a simpler heuristic criterion based on the minimization of the rough
approximation of the average value of governing operator was proposed in [14]. This
criterion does not take into account the history of computations. It has a local
character and it is suitable for the parallel realization.

In this paper, we construct a simple heuristic criterion as a minimal principle for the

increment of searching function over the stencil in following form
Coumy+Cirup, +Coupy+C3up; +Caup, ‘ (19)
Co+C1+C2+C5+Cy :

Here C;, i =0,1,2,3,4 are some constants to be chosen. As our numerical tests

usznal — mini:I,II |ulR _

show, the best result corresponds to the following set Co =1, C; =0, i =1,2,3,4

Thus the final solution in each grid point is chosen among two admissible solutions
ul, and vk according to the following simple minimal principle

ur’™¥ = min;_s 1 [ub — Uy |- (20)
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It is easy to see that this principle has a local character and it is very suitable for
parallel computations, because it allows in principle to provide computations of
searching function in each grid node independently in separate processors in
computers with massive parallel processors and in computers with pipe-line
processors it allows to provide the maximal loading of pipe-line.

4. Results of computations

Now let us consider some numerical results obtained by the proposed method.
Computations were carried out for the following values of parameters m = 0.2,
kp, =1.0- 1012 m2,uw =1-10"6 N . sec-m_2,uo =3-10"% N -sec-m~2,
L=H=100m,Py=0,Qp=0.69444- 1072 m? - sec™! . Parameter kp, varies
in the range from 0.50 - 10712 m?2 t0 0.01 - 10712 m?2. Thus the absolute penetration
in the subregion D; is 2 to 100 times less than those in subregion D, . Presented
results correspond to the uniform grid with 61*61 nodal points in (x,y)-space.

The first series of results corresponds to kp, = 0.5-10~'2 m?2. Fig.3 shows the
isolines of water saturation s and appropriate 3D chart for time ¢ = 400 hours. Fig.4
and 5 show the same results for £ = 800 hours and ¢ = 1200 hours respectively.
Fig.6 shows two functions characterizing the efficiency of the oil recovery process by
the water drive. Line 1 corresponds to the ratio of the recovery oil to the total oil
volume in initial moment ¢ = 0 with respect to time

JI1 = s(x,y,t)]dzdy

o(t) =2 21
O = T = 50,9, 0))edy @b
D
and line 2 corresponds to the function
L
Of[ %g_i]zzody
Y(t) = — (22)
J[k(ﬁz + %)dm]zzody

describing the water content in the development mixture at the production well
corresponding to the boundary x = 0. According to the presented results we can see
that the solution of the considering problem has a wave type and the front of water
wave solution is spreading faster in the upper part of the flow region Dy with high
penetration. Subregion D; with low penetration plays the role of the partial obstacle
and the water wave also is spreading in those region but more slowly. The second
series of results corresponds to kp, = 0.20 - 10712 m? and the appropriate results
are presented on Fig.7-10. In this case, we can see that there are two shock-type water
waves in the considering flow. The first wave corresponds to isolines 0.25 and 0.35
and the second corresponds to 0.45 and 0.55. According to the presented results it is
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easy to see that the first shock wave is spreading through the region with the low
penetration, but the second wave stays near the right border of the low penetration
subregion.

The third series of results corresponds to kp, = 0.01 - 1012 m? and the appropriate

results are presented on fig. 11-14. In this case, the water is not spreading through the
region with the low penetration and the water wave front is stopping near the right
border of the low penetration subregion, which plays a role of a solid obstacle in the
flow region.

- | WJ - —
: l*\“\ ( [ E

v ‘\ﬂ',":;ﬁ?d\ N £
I ) E -
{ ?ll s §1

I
0O W AN 30 A S B 0 B0 %0 100
x

Fig.3. The water saturation att = 400 hours. kp, = 0.50 - 10712 m?2.
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Fig.4. The water saturation att = 800 hours. kp, = 0.50 - 10712 m?2.
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Fig.5. The water saturation att = 1200 hours. kp, = 0.50 - 10712 m2.
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Fig.6. Characteristics of efficiency of oil recovery.
Line 1-9(t), line 2-~(t). kp, = 0.50 - 10712 m?2.

The analysis of the efficiency of the oil recovery process shows that after the moment
t = 250 hours, when the water wave in the upper part of the flow region is close to
the production well (boundary x = 0), the efficiency falls down and oil from the low
penetration subregion and even from the high penetration subregion
(0 <2 <0.2L, 0 <y<0.5H) almost can not be developed by the water drive.
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Fig.7. The water saturation att = 400 hours. kp, = 0.20 - 10712 m?2.
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Fig.8. The water saturation at t
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Fig.9. The water saturation at t = 1200 hours. kp, = 0.20 - 10712 m?2.
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Fig.10. Characteristics of efficiency of oil recovery. Line I - §(t), line 2 - y(t).
kp, =0.20-10712 m2.

According to our results, we see that in the case considered in this paper, it is possible
to develop only about 35 percents of oil by the usual water drive technology although
70 percents of oil is contained in the high penetration subregion. These results are in
good correspondence with well-known practice.

Time (=400 howrs

S

38 2828 2 3 8 8

=)

Fig.11. The water saturation att = 400 hours. kp, = 0.01 - 10712 m?2.

5. Conclusions

Our high-precision numerical quasi-characteristics technique developed for the
transport equation of hyperbolic allows us to obtain solutions of complicated porous
media problem with essentially heterogeneous parameters without mesh fitting
procedures on rough spatial meshes. This technique can be implemented even on
small computers and workstations for fast evaluation and exact modeling of oil and
gas development technological processes.
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Fig.12. The water saturation att = 800 hours. kp, = 0.01- 10712 m?.
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Fig.14. Characteristics of efficiency of oil recovery.
Line 1-0(t), line 2-~(t). kp, = 0.01 - 10712 m?.
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YucneHHoe mogenupoBaHue AByX(da3HbIX Te4YEeHUN Yepes
CYyLEeCTBEHHO reTeporeHHy NOpUCTyIo cpeay CXeMou
KBa3uxapaKTepUCTUK BbICOKOro rnopsigka

M.I1. Jlesun <mlevin@ispras.ru>
Hnemumym cucmemnozo npoecpammupoganus um. B.11. Heannuxoea PAH,
109004, Poccus, e. Mockaa, ya. A. Conxcenuysvina, 0. 25

AHHoTanus. PaccMaTpuBaroTcst BONPOCHI YHCIEHHOTO MOJAEIHPOBAHUS HECTAMOHAPHBIX
IByX(a3HEIX MOTOKOB B MOPUCTBIX CPelax C CYIIECTBEHHO HEOJHOPOIHBIMH CBOHCTBAMU C
IIOMOIIBIO YUCIICHHOH CXeMbl KBa3UXapaKTEPUCTUK BTOPOrO IMOpPsJAKa ammpoxcumanuu. B
OTIMYHE OT U3BECTHBIX CXEM BBICOKOIO HOpSJKa, IPEACTABICHHAS CXE€Ma HUMEET BTOPOl
MOPSIOK AaNIpOKCHUMaluK B o0JlacTsX C OONBIIMMH TPajWCHTaMH pPELICHWH, a Takxke
COXpaHsieT MOHOTOHHBIH XapakTep PEeIeHU. JTO JOCTHraeTcsi 3a CYeT BBIOOpa MTOrOBOIO
pelIeHus B KaXJI0i pacyeTHOH TOUKE U3 HECKOJIBKHUX JOMYCTUMBIX PEIICHUH C pa3sITHIHBIMH
JIUCIICPCUOHHBIMUA ~ CBOMCTBaMH. MOHOTOHHBIM ~XapakTep peleHus 00ecrneynBaeTcs
CHeIHaTbHBIM KPUTEPHEM BBIOOpPA perIeHus, chopMyIHPOBAHHEIM B IIPEICTABICHHOH paboTe.
OTOT KpHUTepHH MMeEeT JIOKaJIbHBII XapakTep M yAOOCH AIA MapaiIeIbHBIX BBIYHUCICHUH.
S¢PeKkTHBHOCTH MOX0/a NPOWLTIOCTPUPOBAHA HA PEIICHNH 3aJa4 BHITECHEHHs HehTH BooH
B CYIIECTBEHHO HEOJHOPOIHBIX MOPHUCTBIX IDIACTaX C Kod(duImeHTaMn abCOTIOTHOH
MIPOHULIAEMOCTH, CKaYK000Pa3HO H3MEHSIOIMMHUCS B IECSTKU U COTHH pa3s.
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