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Abstract. This paper describes a new approach for dynamic code analysis. It combines dynamic
symbolic execution and static code analysis with fuzzing to increase efficiency of each
component. During fuzzing we recover indirect function calls and pass that information to the
static analysis engine. This improves static path detection in the control flow graph of a
program. Detected paths are used in dynamic symbolic execution to construct inputs which will
cover new paths during execution. These inputs are used by the fuzzing tool to improve test-
case generation and increase code coverage. The proposed approach can be used for classic
fuzzing when the main goal is achieving high code coverage. As well it can be used for targeted
analysis of paths and code fragments in the program. In this case the fuzzing tool accepts a set
of programs addresses with potential defects and passes them to the static analysis engine. The
engine constructs all paths connecting program entry point to the given addresses. Finally,
dynamic symbolic execution is used to construct the set of inputs, which will cover these paths.
Experimental results have shown that the proposed method can effectively detect different
program defects.
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1. Introduction

Dynamic program analysis has proven to be one of the most effective bugs finding
techniques. It has a low false positive rate and most of the detected defects can be
reproduced. There are several approaches for dynamic analysis. Fuzzing [1] is one of
the most effective and widely used techniques, which detects defects and provides
inputs to reproduce them. But it has some limitations. For example, fuzzing itself is
not usable for analysis of the specific program fragments. The main reason is that
inputs are randomly generated in an attempt to increase the code coverage. Dynamic
symbolic execution [2] is used for systematic generation of program inputs to cover
all possible execution paths. It is significantly slower than fuzzing and cannot be
applied to analysis of large programs.

One of the most widely used fuzzing tools is AFL (American Fuzzy Lop) [3, 4, 5, 6].
It is a coverage guided fuzzing tool, which uses genetic algorithms for test case
selection and mutation adoption. AFL can perform static instrumentation of the target
program or dynamic binary code instrumentation based on QEMU [7] for coverage
gathering. LibFuzzer [8] is an embedded fuzzing library in LLVM [9] compiler
infrastructure, which provides the means to fuzz individual program function.
Syzkaller [10] performs fuzzing of system functions calls for operating systems (OS)
based on their descriptions. It generates and runs small programs containing system
functions calls and monitors the OS state. If a crash is detected the corresponding
input and generated program are stored for debugging purposes. Peach [11] is used
for network protocol fuzzing. It introduces the concept of pit files, which describe
target protocols. Grammar-based fuzzing [12] is used for fuzzing of programs
(compilers, interpreters, parsers, translators etc.) accepting BNF structured inputs. It
has predefined specifications for more than 120 programming languages and data
formats.

Symbolic execution of a program typically refers to the process of traversing its
execution tree while evaluating internal and external program data as abstract
symbolic variables instead of concrete values. Program instructions applied to these
variables form path constraints (typically represented as SMT — Satisfiability Modulo
Theory — formulas). Working with these path constraints allows one to identify
valuable information about multiple potential concrete execution paths at once.
Dynamic symbolic execution (DSE) tools incorporate various techniques and
improvements of basic symbolic execution to allow one to solve various practical
program analysis tasks. They are widely used to perform automatic execution tree
traversal by generating concrete input data. In turn, these data sets are used as test
suites for defect detection and various coverage-related analyses for the target
program. Avalanche [13, 14], DySy [15], BINSEC/SE [16] are well known DSE tools.
There are advantages and limitations for both fuzzing and dynamic symbolic
execution. Black-box and grey-box fuzzing tools can generate a lot of inputs in a
limited time, but suffer from random nature of data generation algorithm and the only
feedback which is used to support genetic algorithms is coverage data and crash/hang
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information for program under analysis. On the other hand, dynamic symbolic
execution tools perform aggressive instrumentation of program under analysis to
gather execution traces in terms of SMT formulas which drastically influences
performance of program under analysis. Also, dynamic symbolic execution suffers
from the path explosion problem [17]. Recent research focuses on combining
different analysis methods to overcome limitations of methods applied separately.
Amongst known solutions we want to mention jFuzz [18], Driller [19], a hybrid
symbolic execution assisted fuzzing method [20] which combine fuzzing and
symbolic execution to overcome known limitations of methods.

In this paper we propose an approach for combining fuzzing, dynamic symbolic
execution and static code analysis for program defects detection.

2. Proposed fuzzing tool

2.1 The Architecture of the tool

The tool consists of four basic components (fig. 1). The first component is a fuzzing
tool, which provides a set of mutations and basic infrastructure. The second
component is a DynamoRIO [21] based client library for code coverage gathering.
The third component is the dynamic symbolic execution tool Anxiety [22]. The fourth
component is a program binary code static analysis engine. The proposed tool is able
to perform classic fuzzing, where the main goal is to increase code coverage as much
as possible. Additionally, it can perform directed analysis of the target program —
instead of trying to increase code coverage the tool tries to generate input data to cover
specified fragments of the target program.

‘ Target program ‘ Target addresses
e Fuzzing tool ™,
o ™~ s - \
Mutation engine Program’s static
of fuzzing analysis engine

‘ DynamoRIO ‘ Dynamic

based coverage symbolic

library execution tool

-

Crashes and hangs ‘

Fig. 1. The architecture of the tool
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For directed fuzzing the tool accepts a set of addresses which should be executed
during analysis. At first, classic fuzzing is performed until coverage stops to increase
for some time (controlled by user). This typically means that there are certain
fragments of code which are completely inaccessible during execution (i.e. dead code)
or can only be reached with an input data set with internal dependencies that are too
complex for the semi-random input mutation algorithms. In order to generate these
input data sets we employ dynamic symbolic execution guided by static analysis.

2.2 Guided dynamic symbolic execution

Anxiety, the dynamic symbolic execution tool used within the system,
implements «offline» concolic execution:

e it continuously performs concrete executions along with symbolic execution of
the target program using initial input data sets and input data sets generated by
the tool;

e thus, a concrete execution for an input data set produces a symbolic path
constraint for this specific data set;

e this path constraint includes a number of branch points explicitly influenced by
the input data set;

e for every branch point in the path constraint an attempt is made to invert the
corresponding comparison and check whether the modified path constraint is
satisfiable;

e the process of checking for satisfiability automatically produces a different input
data set which is presumed to force the execution of the program onto a different
path at the corresponding branch point;

e upper and lower depth limits are used to avoid processing the same branch points
(producing input data sets processed previously) and creating path constraints
too large to check in a limited time.

The number of branch points is a critical factor of the analysis complexity. During

guided symbolic execution certain branch points are processed in a different manner

based on fuzzing goals:

e  «black» lists are used to skip certain branch points which were already covered
during normal fuzzing (meaning that fuzzing produced at least two different
input data sets which force the program execution differently for every branch
point among given);

e  «whitey lists are used to augment path constraints with external information —
which direction at the branch point must be taken for all generated paths.

Classic fuzzing, where code coverage increase is the main goal may also be improved

via DSE integration. The only difference is in the list of basic blocks passed to DSE.

Static analysis detects the list of basic blocks, whose both branches were executed

and pass them to DSE as a «black» list (since no new information we will be gained

by inverting such blocks).
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In both cases, traces of the target program execution are stored in order to perform
indirect call recovery (function pointers, virtual functions). This information is used
to improve static analysis which in its turn improves the results of other components.
Static analysis is periodically invoked during fuzzing to keep the data base of the
target program updated using recovered indirect call addresses. This enables mutual
improvement for static and dynamic analysis. Experimental results prove the
effectiveness of this approach.

2.3 Static analysis engine

The static analysis engine has two basic functionalities: detecting paths in a control
flow graph and program trace analysis. In the first case the tool identifies a number
of paths between two program addresses. The number of limitations are applied for
optimization: path’s maximum length, maximum number of usages for each basic
block or a function during path construction etc. These limitations are necessary to
overcome the path explosion problem. Path construction consists of two basic stages
(fig. 2). The first stage filters some functions based on call graph. It uses forward and
backward BFS (Breadth-First Search) algorithm for entry and destination addresses
of a target program to determine all functions which should be included in the path
detection process. In the second stage we use modified DFS (Depth-First Search) for
path detection. Then we construct a «white» list for DSE. It contains all basic blocks
from detected paths which have branch instructions. The «white» list is used by DSE
to generate data which will cover both branches of each basic block.

Target program

Dizassembler -

Data base

L

Static analysis engine
Call graph filter

"‘ Traces analysis
Paths construction

$ L

White list Black list

Fig. 2. Static path detection

In the second case, static analysis loads the set of traces generated by fuzzing tool and
tries to find all basic blocks whose both branches were executed. Then it creates a
«black» list based on these blocks to be used by DSE for optimization.
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2.4 Switching metric

To switch between the fuzzing tool and DSE (static analysis included) we use a
variable parameter V. DSE is invoked if below formula is satisfied:

total _execs — last_effective_exec > 10000 * N

where fotal_execs — number of executions in the moment when we try to invoke DSE,
last_effective_exec — number of executions when the fuzzing last time was able to
detect new execution path, NV — is specified by user.

If the fuzzing tool was not able to open new execution traces for some time , then we
invoke DSE.

2.5 DSE run time metric

We use special metric for calculating the maximum amount of time to allow for the

DSE stage. This amount (in seconds) is calculated according to below formula:
runtime = 30 + total_execs / 50000

where runtime — time limit for a DSE run, fotal execs — number of executions at the

moment when we try to invoke DSE.

The running time for DSE is at least 30 seconds (the number is determined according

to experimental results). Our experiments show that less than 30 second for DSE is

not enough to achieve valuable results for an average program. We increase DSE run

time limit in one second after each 50.000 executions, which enables it to run longer

during fuzzing.

2.6 Mutual improvement of static analysis results

While the target program is processed, static analysis engine precision is continuously
improving due to indirect call address recovery. DynamoRIO [18] based coverage
library has trace generation support, which allows us to recover actual addresses for
indirect call instructions. During fuzzing process, unique traces are generated for the
target program. Then they are analyzed for indirect call address recovery. The process
is simple, for each executed block we store information about previously executed
block. Then based on that information the actual address is recovered: if there is block
in trace which belongs to some function f and previously executed block belongs to
some function g, then there is an edge between g and ffunctions in the call graph. The
newly detected edges are added to the target program data base.

Improved static analysis has positive impact on DSE results. It allows to construct
more inputs which are covering different execution paths between program entry
point and destination addresses (a direct fuzzing case). These inputs improve the
coverage of the fuzzing tool and improve its effectiveness. Proposed scheme of
interaction between these three tools allows iteratively improve the results of each
other and overall fuzzing results.
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3. Results

3.1 Results of fuzzing integrated with DSE

In the table below (Tab. 1) you will find experimental results of classic fuzzing (with
aim of code coverage increase) integrated with DSE. In this case we try to increase
code coverage as much as possible. All detected crashes were verified manually.

Table 1. Classic fuzzing guided code coverage increase results

Operating system Test name Detected crashes Running time
(hours:minutes)

Debian-6.0.10 blast2 3 0:15
Debian-6.0.10 faad 1 0:20
Debian-6.0.10 efax 1 0:30
Debian-6.0.10 wavpack 5 0:30
Debian-6.0.10 tic 4 1:00
Debian-6.0.10 ul 7 1:00
Debian-6.0.10 Bsd-form 6 12:00

3.2 Results of directed fuzzing

Results of the directed fuzzing for programs from Linux distribution and DARPA
[23] Cyber Grand Challenge are presented in Table 2. Static analysis has detected
potential program addresses which may have defects. We run fuzzing in directed
mode to generate data, which will cover specified addresses in an attempt to crash
them. The last column shows the number of hits for detected address list. The fist
value is the number of addresses for which the fuzzing tool was able to generate input
data to cover them during execution. The second value is the number of potential
buggy addresses detected by static analysis. For example, for the test FableReport
static analysis has detected 15 potential defect addresses, but fuzzing tool managed
to cover only 7 of them. The number of crashes is not synchronous with hit addresses
due to several reasons:

e  program can crash in the same address with different execution paths and fuzzing
will consider it as different crashes

e if fuzzing managed to generate data which will cover specified address, it is not
necessary that program should crash; the address may be false positive from
static analysis or generated data do not crash it.

All results were verified manually.
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Table 2. Directed fuzzing guided by static analysis results

Operating Test name Crashes | Runing time Hits
system (hours:minutes)
Debian-6.0.10 faad 2 21:00 1/1
Debian-6.0.10 passwd 2 0:20 1/1
Debian-6.0.10 uuenview 13 0:50 1/1
DARPA Flash File System 35 2:00 171
DARPA 3D Image Toolkit 30 19:00 1/1
DARPA Charter 9 20:00 1/1
DARPA Diary Parser 9 20:00 171
DARPA PRU 2 1:00 1/1
DARPA Recipe_Database 23 20:00 1/1
DARPA SCUBA_Dive Logging 10 20:00 11
DARPA SFTSCBSISS 1 20:00 1/1
DARPA Simple Stack Machine 15 20:00 1/1
DARPA CML 10 20:00 1/1
DARPA Eddy 9 4:00 1/1
DARPA FablesReport 3 4:00 7/15
DARPA Multipass3 7 4:00 1/3
DARPA Online_job_application 4 4:00 11
DARPA Overflow_Parking 2 4:00 1/1
DARPA PTassS 5 4:00 172
DARPA Sample Shipgame 5 4:00 2/2
DARPA SAuth 1 4:00 1/3

4. Discussion

A similar approach is used in Badger [24] tool. It combines fuzzing and dynamic
symbolic execution in the following way: when the input is passed to symbolic
execution it tries to update this input until it reaches new coverage or find a path with
lower cost of analysis in terms of computational resources. This approach uses trie-
based [25] symbolic execution to predict and reduce the complexity of dynamic
symbolic execution by saving a trie-like structure for path constraints gathered during
path exploration until new part of path detected to execute it in symbolic manner.
Osym is another analysis tool [26] which combines symbolic and fuzzing. It uses
optimistic solving of relaxed path constraints trying to find new paths with small cost
of computations in solver and pruning conditions gathered from repetitive basic
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blocks from symbolic formulae to simplify constraints relying on fuzzing tool as an
efficient validator of generated input.

Our approach differs from the proposed solutions. It uses static analysis to guide
fuzzing and dynamic symbolic execution through continuously updated program call
graph to reach destination address with the help of dynamic symbolic execution.

5. Conclusion and future work

Indirect call instructions addresses are not fully recovered based on program traces.
There can be addresses, which will not be recovered because corresponding path is
not executed during fuzzing. Future research directions are:

e add alias analysis on program’s binary representation to improve indirect
call addresses recovery;

e use available information/traces obtained from fuzzing for alias analysis
improvement.
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2 Epesanckuii 20Cy0apcmeenubiil ynueepcumen,
Jlabopamopus cucmemHo20 npocpamMmMupoO8anus,
0025, Apmenus, Epesan, yin. Anexa Manyxanua, 1

Annomauyus. B 3Toi cTaThe OMMCHIBACTCS HOBBIM MOAXOJ MJIs AMHAMHYECKOTO aHajlu3a
mporpaMM. OH CcOBMEIIaeT JAWHAMHUYECKOE CHMBOJIBHOE WCIIOJHCHHE MPOrpaMM |
CTaTUYECKUH aHaIH3 KOJa IporpamMm ¢ (ha33uHTOM ISt HOBBIIICHUS 3P (PEKTUBHOCTH KaKAOTO
13 MeToJ10B. B mporiecce (a33uHra BOCCTaHABIMBAIOTCS BEI30BHI 110 BEIYUCIISIEMBIM aJIpecam U
pacmupeHHbI Tpad BHI30BOB IEPEIACTCS MOIYINIO CTAaTHYSCKOTO aHANIM3a. JTO MO3BOJISET
YIIYYIIUTh BBIYMCIICHHE MyTeH MCIOJIHEHHS MPOTPaMMBI B TPOIECCE CTATUYCCKOTO aHAIM3a.
OTKpBITBIC HOBBIC IMYTH KCIOJHCHHS B MPOrpaMMe MEPEHaroTCs MOIYJIO0 JHHAMHYECKOTO
CHUMBOJIBHOTO MCIIOJHEHHS AJIsl TeHepalii HOBBIX HAOOPOB BHEIIHHUX JAHHBIX IMPOIPaMMBbI C
LIEJIBIO UCTIOJIHEHMS U aHAJIU3a MPOTrPaMMBbI IO OTKPBITHIM Iy TSM HcoaHeHust. HoBbie HaGopbI
BXOJHBIX JaHHBIX TEPEIAOTCS MOIYJIIO (ha33uHra Uil yBEIMUYCHUS MTOKPBITHS IPOTPaMMEBI C
WX MCIIOJb30BAaHUEM B KaUeCTBE 3aTPaBKU. [IpeiIo;KeHHBIN TOJX0/ MOXKET OBITh HCIIOIB30BaH
B paMKaX KIIACCHYECKOTO alroOpuTMa paboThl (a33MHra C IEelb0 JOCTHKECHUS BBICOKOTO
MTOKPBITHS KOJIa TIPOrpaMMbI TECTOBBIMH Habopamu. Tarke NMpeIUIoKEHHBIH METOIl MOXKET
HCTIOJIb30BAThCS TSl HATIPABJICHHOTO aHAIN3a My Tel U PparMeHTOB Kojia MporpaMMsl. B aTom
ciy4aeT ¢aszsep GopMUpyeT HaOOp aaPECOB U MEPEaeT UX MOAYIIIO CTATHYCCKOTO aHAIU3a.
Cratuyeckuil aHanu3 ¢opMupyer HaOoOp IyTeH, KOTOpble NPHUBOAAT K HCHOIHEHHIO
HMHCTPYKLHH 10 3TUM ajpecaM OT TOYKH BXOJa B Iporpammy. Jlanee Moxysip AMHAMHYECKOE
CHUMBOJIBHOTO HMCHOJHEHHS HCIOIB3YeTCS ISl TIOCTPOSHHUS HaOOPOB BXOAHBIX AAHHBIX IS
MPOXOXKACHUS 1O OSTHM IyTAM. Pe3ynbTaTel SKCIEPHMEHTOB ITOKA3bIBAIOT BBICOKYIO
3¢ PEKTHBHOCTh OOHAPYKEHUSI MPOTPAMMHBIX OMIMOOK MPH NMPHUMEHEHUH IPEIUI0KEHHOTO
MeToJ1a.
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