Моделлирование задач гидродинамической устойчивости с помощью библиотек OpenFOAM

Ильяс Сибгатуллин¹ и Сергей Стрижак²

¹ МГУ им. Ломоносова, Москва, Россия ² МГТУ им. Баумана, Москва, Россия

> III Международная конференция ОБЛАЧНЫЕ ВЫЧИСЛЕНИЯ: ОБРАЗОВАНИЕ, ВЫЧИСЛЕНИЯ, РАЗРАБОТКИ 2012

Неустойчивость Релея-Тейлора

- Неустойчивость поверхности раздела между двумя средами разлиной плостнсти при ускоренном движении одной из них в другую
- Астрофизика: межзвездный газ, вспышки сверхновых
- Инерциальный управляемый термоядерный синтез
- Геофизика, океанлогия ...

Актуальные задачи:

Турбулентное перемешивание, взаимодействие пузырей, доминирующие пузыри

Понимание механизмов развития одномодовых возмущений важно для понимания турбулентных режимов неустойчивости Релея-Тейлора

Актуальные задачи:

 Турбулентное перемешивание, взаимодействие пузырей, доминирующие пузыри
 Понимание механизмов развития одномодовых возмущений важно для понимания турбулентных режимов неустойчивости Релея-Тейлора

Иногамов Н.А., Демьянов А.Ю., Сон Э.Е. Гидродинамика перемешивания. 1999

Сотрудничество в рамках Alpha-Group

G. Dimonte et al. A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations:The Alpha-Group collaboration, Physics of Fluids. 2004. volume 16. N5. 1668-1693.

P. Ramaprabhu et al. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem, PHYSICAL REVIEW E 74, 066308. 2006.

Развитие неустойчивости Релея-Тейлора

Малые возмущения на разделе фаз растут экспоненциально

 $k = 2\pi/L$ $h(t) = h_0 \cosh(\Gamma t),$ Γ Инкремент роста $\Gamma = \sqrt{\mathcal{A}gk}$

Число Атвуда

$$\mathcal{A} = rac{
ho_{ ext{heavy}} -
ho_{ ext{light}}}{
ho_{ ext{heavy}} +
ho_{ ext{light}}}$$

Постоянная (конечная) скорость

Число Фруда

$$v_b = Fr \sqrt{\frac{\mathcal{A}gL}{1+\mathcal{A}}} \qquad v_b ? \mathcal{A}$$

Ускорение гриба и пузыря ?

OpenFOAM для исследования задач гидродинамической устойчивости, динамических свойств, бифуркаций и аттракторов

- Изучение и настройка решателей OpenFOAM для «ламинарных» задач гидродинамической устойчивостьи
- interFoam для RT
- buoyantBoussinesqPimpleFoam для RB
- swak4Foam для построения начальных и граничных распределений
- большие сетки (100 * 10е6)

Методы моделирования нейустойчивости РТ

•методы, при использовании которых поверхность раздела аппроксимируется кусочно-заданным полиномом (метод «Front Tracking», метод граничных элементов);

•методы, основанные на отслеживании объема каждой фазы в расчетных ячейках, близких к границе сред (метод «Volume of Fluid» – VOF);

•методы сквозного счета (метод «Level Sset»)

interFOAM

Rusche H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. Ph. D. Thesis Imperial College (UK), 2002. Eric Paterson Multiphase Navier-Stokes simulation of the Rayleigh–Taylor Instability. A Basic Training Tutorial 5th OpenFOAM Workshop 21 - 24 June 2010 Chalmers University of Technology Göteburg, Sweden

InterFOAM

для чтения:

http://www.h.jasak.dial.pipex.com/index.html

VOF Volume of Fluid

Уравнение сохранения количества движения

$$\frac{\partial \rho U}{\partial t} + \nabla .(\rho U U) - \nabla .\mu \nabla U - \rho g = -\nabla p - F_s$$
$$\nabla .U = 0$$
$$\frac{\partial \gamma}{\partial t} + \nabla .(\gamma U) = 0.$$

на интерфейсе (и только на нём) появляется член с искусственной сжимаемостью

$$\frac{\partial \gamma}{\partial t} + \nabla .(\gamma U) + \nabla .(\gamma (1 - \gamma) U_r) = 0$$

$$\begin{aligned} \frac{\partial \rho \mathbf{U}}{\partial t} + \rho \mathbf{a}_F + \nabla \boldsymbol{\cdot} \left(\rho \mathbf{U} \mathbf{U} \right) \\ &= -\nabla p^* + \nabla \boldsymbol{\cdot} \left(\mu \nabla \mathbf{U} \right) + \left(\nabla \mathbf{U} \right) \boldsymbol{\cdot} \nabla \mu - \mathbf{g} \boldsymbol{\cdot} \mathbf{x} \nabla \rho + \sigma \kappa \nabla \gamma \end{aligned}$$

средняя кривизна

A TI

 $\kappa(x) = \nabla . n$

нормаль к поверхности

 $n = \frac{\nabla \gamma}{|\nabla \gamma|}$

сила поверхностного натяжения

 $F_s = \sigma \kappa(x) n$

выражение для плотности

 $\rho = \gamma \rho + (1 - \gamma) \rho$

Test case. 2D & 3D

128x384x128

- Моделирование и тестовые расчёты проводились на платформе unihub.ru
- Расчеты на больших сетках до 10000000 ячеек проводились на суперкомпьютере Ломоносов.

наборы полезных утилит

- swak4Foam
- pyFoam

http://www.openfoamwiki.net/index.php/Contrib/swak4Foam

http://www.openfoamwiki.net/index.php/Contrib_PyFoam

funkySetFieldsDict

```
Alpha1
{
field alpha1;
expression "1";
condition "pos().y>=-
0.03*cos(2*3.141593*pos().x)*cos(2*3.141
593*pos().z)";
}
```

Результаты 3D

 $y=-0.03^{(1+\cos(2^{3}.14^{x}))^{(1+\cos(2^{3}.14^{z})))}$

y=-0.01*cos(2*3.14*x)* cos(2*3.14*z)

Динамика неустойчивости RT на сетке 128x128x1024

HPC results. 3D case.

2 head nodes DL380 G7 + IB switches + 80 BL2x220 G7 compute nodes + 15 SL390G7 nodes with 45 GPU's + storage with 112 TB. More then 2000 computer cores

Number of elements	6291456
Atwood number	0.76
Time-Step	0.001
Number of time steps	1000
Cores (nodes*processor/nodes*cores/processor)	384 (32*2*6)
Overall CPU time	2610

dt=0.001	A=0.76	2x6x2	128x384x128 cells
Tend, s	ClockTime, s	Cells per core	Cores
1	43057	173431	36
1	39144	131072	48
1	20962	65536	96
1	11551	44376	144
1	7192	32768	192
1	5237	26624	240
1	4218	21845	288
1	4020	20971	300
1	2936	18144	336
1	2812	17556	360
1	2610	16128	384
1	2624	15680	396

Течение и теплообмен в месте соединения труб

Testing DNS capability of OpenFOAM and STAR-CCM+, S.W. VAN HAREN, 2011

Сравнение для течения в трубе

Re_tau = 180

Течения в каналах квадратного сечения

решатель: модифицированный channelFoam

Хорошее соответствие средних скоростей, флуктуаций скорости, сопротивления и вторичных течений

Direct numerical simulation of turbulent flow through noncircular ducts: a validation

Gerti Daschiel and Bettina Frohnapfel

7th OpenFOAM® Workshop, Darmstadt, 2012 http://www.extend-project.de/7th-openfoam-workshop

Свободная конвекция

Mecánica Computacional Vol XXX, págs. 277-296 (artículo completo) Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.)

Rosario, Argentina, 1-4 Noviembre 2011

Ampofo F. and Karayiannis T. Experimental benchmark data for turbulent natural convection in an air filled square cavity. International Journal of Heat and Mass Transfer, 46(19):3551–3572, 2003.

Le Quéré P. Accurate solutions to the square thermally driven cavity at high rayleigh number.Computers & Fluids, 20(1):29–41, 1991.

buoyantBoussinesq-SimpleFoam

X=x/L

buoyant-BoussinesqPisoFoam +LES

Неустойчивость Релея-Бенара, проникающая конвекция

Nondimensional system of equations for disturbances:

Parameters:

$$\begin{split} \sigma &= \frac{\nu}{\kappa} \\ \lambda &= \frac{T_b - T_4}{T_b - T_u} \\ R &= \frac{g \alpha_4}{\nu \kappa} \frac{h^3}{\lambda^3} (T_b - T_4)^2 \end{split}$$

11

Prandtl number (for water at $4^{\circ}C$ σ =11.5968)

parameter which characterizes the location of density maximum in conductive state

ρ(z)

Rayleigh number

D.V. Kuznetsova, I.N. Sibgatullin. Transitional Modes of Penetrative Convection in Plane Layer. 2012. Fluid Dynamics Research, IOP Publishing

Стационарные режимы, OpenFOAM

Сравнение периодических режимов классической конвекции

Анимация различных режимов трёхмерной проникающей конвекции, полученных модификацией решателя buoyantBoussinesqPimpleFoam

Гексагональные ячейки в проникающей конвекции

Заключение

- Задачи, связанные с моделированием неустойчивости Релея-Тейлора и Релея-Бенара могут исследоваться при помощи открытых библиотек OpenFOAM
- Для того чтобы описывать тонки эффекты связанные с развитием гидродинамической неустойчивости требуется настраивать и проверять решатели
- Проведенные расчёты показывают хорошую масштабируемость решателей, в частности interFoam на параллельных кластерах.