

III Международная конференция «Облачные вычисления: образование, исследования, разработки»

6-7 декабря 2012г.

Моделирование процессов течения двухфазной смеси с межфазным массообменом и учетом сжимаемости сред средствами OpenFOAM

НИЦ «Курчатовкий институт» Отделение Транспортных Ядерных Реакторов

Постановка задачи

«Пока температура жидкости такова, что давление насыщенного пара внутри пузырька меньше внешнего давления над жидкостью, пузырек не может расти, потому что и теперь нет недостатка в силах, стремящихся его раздавить.

...Наконец, на пузырек действует внешнее давление, под которым находится вся жидкость, и именно оно играет главную роль. Остальные две силы лишь облегчают раздавливание пузырька внешним давлением».

- Модель смешивающихся жидкостей с общей системой уравнений (twoLiquidMixingFoam)
- Модель несмешивающихся жидкостей с общей системой уравнений (interFoam и остальные)
- Модель течения двух жидкостей с отдельной системой уравнений для каждой фазы (twoPhaseEulerFoam)

- compressibleInterFoam течение двух сжимаемых, изотермических жидкостей
- interPhaseChangeFoam течение двух несжимаемых изотермических жидкостей с межфазным массообменом
- Нужен новый решатель (новая модель)

Вывод уравнений: перенос объёмной доли

$$\alpha_{1} = \frac{V_{1}}{V} = 1 - \alpha_{2} \qquad \rho_{1} = \frac{m_{1}}{V_{1}}, \quad \rho_{2} = \frac{m_{2}}{V_{2}}$$
$$\alpha_{2} = \frac{V_{2}}{V} = 1 - \alpha_{1} \qquad \rho = \alpha_{1}\rho_{1} + \alpha_{2}\rho_{2}$$
$$\Sigma_{i}\alpha_{i} = 1$$
$$\frac{\partial \alpha_{i}\rho_{i}}{\partial t} = -\nabla \cdot (\alpha_{i}\rho_{i}\boldsymbol{U}) + S_{i}$$

Переходим от массовых потоков к объёмным

$$\frac{\partial \alpha_i}{\partial t} + \nabla \cdot (\alpha_i \boldsymbol{U}) = -\frac{\alpha_i}{\rho_i} \frac{d \rho_i}{d t} + \frac{S_i}{\rho_i}$$

Массовый и объёмный источники фаз

$$\frac{\partial \rho_1 \alpha_1}{\partial t} + \nabla \cdot (\rho_1 \alpha_1 U) = m^+ + m^-$$

- В первую очередь рост/сжатие пузырьков определяется полем давления
- Поэтому принимаем, что источник массы пропорционален разнице локального давления и упругости пара в некоторой степени, например:

$$\dot{m^{+}} = C_{c} \frac{\sqrt{k}}{\sigma} \rho_{1} \rho_{2} \left(\frac{2}{3} max \frac{(p-p_{s},0)}{\rho_{1}}\right)^{1/2} \frac{\alpha_{2} \rho_{2}}{\rho}$$
$$\dot{m^{-}} = -C_{e} \frac{\sqrt{k}}{\sigma} \rho_{1} \rho_{2} \left(\frac{2}{3} max \frac{(p_{s}-p_{s},0)}{\rho_{1}}\right)^{1/2} \left(1 - \frac{\alpha_{2} \rho_{2}}{\rho}\right)$$

Уравнение для давления

В дальнейшем все транспортные уравнения с массовыми потоками будем приводить к объёмным потокам

$$\frac{\partial}{\partial t} (\alpha_i \rho_i \zeta) + \nabla \cdot (\alpha_i \rho_i U \zeta) =$$

$$\rho_i \alpha_i \left(\frac{\partial \zeta}{\partial t} + \nabla \cdot (U \zeta) \right) + \zeta \alpha_i \frac{d \rho_i}{dt} + \zeta \rho_i \frac{d \alpha_i}{dt}$$

Сложив уравнение сохранения объёмной доли для каждой из фаз (см. уравнение транспорта для жидкости), получаем уравнение для давления (без учета теплового расширения фаз)

$$\nabla \cdot (\boldsymbol{U}) = -\frac{d p}{d t} \left(\frac{\alpha_1 \psi_1}{\rho_1} + \frac{\alpha_2 \psi_2}{\rho_2} \right) + \left(\frac{1}{\rho_1} - \frac{1}{\rho_2} \right) \dot{m_1}$$

Поскольку источник массы содержит давление, он может быть включен частично <u>неявно</u> в уравнение для давления

Связь уравнения для давления с уравнением транспорта фазы

При решении уравнения для давления, получаем новые значения поля скорости Для учета нового решения, требуется связать новые потоки, поле давления и и транспорт фазы. Перепишем правую часть уравнения транспорта жидкости

$$-\frac{\alpha_1\psi_1}{\rho_1}\frac{dp}{dt} + \frac{\dot{m_1}}{\rho_1} - \alpha_1\nabla\cdot\boldsymbol{U} + \alpha_1\nabla\cdot\boldsymbol{U}$$

Одно слагаемое с дивергенцией скорости (с положительным знаком) оставим явным, второе — получим из уравнения для давления. В итоге имеем:

$$\alpha_1 \nabla \cdot \boldsymbol{U} + \alpha_1 \alpha_2 \left(\frac{\psi_2}{\rho_2} - \frac{\psi_1}{\rho_1}\right) \frac{d p}{dt} + \dot{m}_1 \frac{\rho}{\rho_1 \rho_2}$$

Баланс между дивергенцией скорости и dp/dt

 Распишем уравнение сохранения энергии в температуре для каждой фазы

$$\alpha_{i} \left(\frac{\partial T}{\partial t} + \nabla \cdot (\boldsymbol{U}T) \right) + T \frac{\alpha_{i} \psi_{i}}{\rho_{i}} \frac{d p}{dt} + T \frac{d \alpha_{i}}{dt} - \frac{1}{\rho_{i} C_{p,i}} \nabla \cdot \kappa_{i}^{Eff} \nabla T = T \frac{1}{\rho_{i}} \dot{m}_{i} - \frac{1}{\rho_{i} C_{p,i}} \frac{p}{\rho_{i}} \dot{m}_{i} + \frac{1}{\rho_{i} C_{p,i}} \left(\frac{\partial \alpha_{i} p}{\partial t} + \nabla \cdot (\alpha_{i} p \boldsymbol{U}) \right)$$

• Сложим все уравнения и получим уравнение сохранения энергии для смеси

$$\begin{split} \frac{\partial T}{\partial t} + \nabla \cdot (\mathbf{U}T) - T \nabla \cdot \mathbf{U} &- \frac{1}{\rho_1 C_{p,1}} \nabla \cdot \kappa_1^{E\!f\!f} \nabla T - \frac{1}{\rho_2 C_{p,2}} \nabla \cdot \kappa_2^{E\!f\!f} \nabla T = \\ & \left(\frac{\alpha_1}{\rho_1 C_{p,1}} + \frac{\alpha_2}{\rho_2 C_{p,2}} \right) \frac{dp}{dt} + \frac{p}{\rho_1 C_{p,1}} \frac{d\alpha_1}{dt} + \frac{p}{\rho_2 C_{p,2}} \frac{d\alpha_2}{dt} \\ & + \dot{m_1} p \left(-\frac{1}{\rho_1 \rho_1 C_{p,1}} + \frac{1}{\rho_2 \rho_2 C_{p,2}} \right) \\ \text{Что делать с диффузией? Пусть будет пропорциональна объёмной доле фазы } \end{split}$$

Возможны два случая:

1) Жидкость $\rho = \rho_0 + \frac{\partial \rho}{\partial T} \Delta T + \frac{\partial \rho}{\partial p} \Delta p$ 2) Газ $\rho = \frac{1}{\frac{C_p}{C_v} R/MT} p$ Остальные свойства постоянны Объединим их: $\rho = \hat{\rho} + \frac{\partial \rho}{\partial p} p$

В случае влияния температуры на плотность, в модель следует ввести соответствующую зависимость

$$\frac{d\rho}{dt} = \frac{d\hat{\rho}}{dt} + \psi \frac{dp}{dt} + p \frac{d\psi}{dt}$$

Моделирование около- и сверхзвуковых течений

Как это обычно делается:

 $\rho \boldsymbol{U} = \hat{\rho} \, \hat{\boldsymbol{U}} + \hat{\rho} \, \boldsymbol{U}' + \rho' \, \hat{\boldsymbol{U}} + \rho' \, \boldsymbol{U}'$

Получаем конвективно-диффузионное уравнение для давления

$$\frac{\partial \psi p}{\partial t} + \nabla \cdot (\psi \boldsymbol{U} p) - \frac{\nabla \cdot \hat{\rho}}{A} \nabla p = 0$$

Что видим в OpenFOAM?

 $p_rghEqnComp = p_rghEqnComp = p_rghEqnIncomp.flux();$ $fvm::ddt(p_rgh) + fvm::div(phi, p_rgh) - fvm::Sp(fvc::div(phi), p_rgh));$ $phi + = p_rghEqnIncomp.flux();$ $\frac{\nabla \cdot \hat{\rho}}{A} \nabla p = 0$

Но вклад в поток от сжимаемой части уже не нулевой!!!

- Решаем уравнение транспорта объёмной доли воды
- Делаем прогноз скорости
- Решаем уравнение для давления
- Обновляем поле скорости и потоков
- Решаем уравнение для скорости
- Решаем остальные уравнения

Пример реализации в OpenFOAM Уравнение для температуры

- fvScalarMatrix TEqn
- (

fvm::ddt(T)

- + fvm::div(phi,T)
- + <u>fvm::SuSp(-divU,T)</u>
- //- fvm::Sp(fvc::div(phi),T)
- fvm::laplacian(kappaEff1/rho1Cp1,T)
- fvm::laplacian(kappaEff2/rho2Cp2,T)

Cip*m1Dot*p*(-1./(rho1*rho1Cp1) + 1./(rho2*rho2Cp2))

+

= =

Ccw*(....)

Предположим два следующих гипотетических случая:

1) Объем заполнен водой, в центре которого - «горячее пятно»

2) Объем заполнен паром, в центре которого - «холодное пятно»

Тестирование: Объёмное испарение и конденсация, результаты

Тестирование: обтекание цилиндра со сферическим наконечником

hU8/benchmarks/cavitation/blunt-body/blunt-body-case.pdf

Рассматривается продольное обтекание цилиндра со сферическим наконечником, при котором давление локально падает до давления насыщения что приводит к вскипанию жидкости — кавитации.

Моделирование проводилось для двух случаев: с учетом переноса тепла между фазами и без

Тестирование: обтекание цилиндра результаты (1)

Тестирование: обтекание цилиндра результаты (2)

Рассмотрим следующую задачу:

квадратная двумерная область заполнена в начальный момент времени водой с температурой 20°С. Нижняя стенка области имеет температуру 120°С, боковые — 20°С. На верхней плоскости задается давление — 20кПа.

По мере развития процесса жидкость у стенки начинает нагреваться и затем, дойдя до температуры насыщения — начинается кипение.

Тестирование: каверна с подогревом, результаты

Тестирование: каверна с подогревом, фильм

Рассматривается процесс впрыска острого пара с температурой 177°С и давлением 1МПа в объём воды с температурой 20°С и давлением 0.1МПа.

В процессе дросселирования пара реализуется сверхзвуковое истечение, приводящее к запиранию потока

Результаты — поля объемной доли, массовой доли и температуры

Результаты — поля скорости, числа Ма и сжимаемости смеси

Для учета движения расчетной области, в OpenFOAM вводится скорость движения сеточных линий:

$$\frac{\partial \rho \kappa}{\partial t} + \nabla \cdot \left(\rho \left(\boldsymbol{U} - \boldsymbol{U}_{s} \right) \kappa \right) - \nabla \cdot \left(\boldsymbol{D}_{\kappa} \nabla \kappa \right) = 0$$

Процесс интегрирования следующий:

- по абсолютным потокам вычислить Со
- переместить сетку (и получить Us)
- перейти к относительным потокам, прогноз U
- решить р, перейти к относительным потокам
- решить остальные уравнения

В уравнении транспорта объемной доли воды дивергенция потока сбалансирована давлением

$$\alpha_1 \nabla \cdot \boldsymbol{U} + \alpha_1 \alpha_2 \left(\frac{\psi_2}{\rho_2} - \frac{\psi_1}{\rho_1}\right) \frac{d p}{dt} + \dot{m_1} \frac{\rho}{\rho_1 \rho_2}$$

fvc::makeAbsolute(phi, U); volScalarField divU(fvc::div(phi)); fvc::makeRelative(phi, U);

Но для расчета сеточных потоков берется текущее значение, что не соответствует текущей схеме -ЭТО НЕПРАВИЛЬНО?

Сопряжение с FEM-кодом UZOR- постановка задачи

Решается задача «впрыска» воды в поток острого пара и анализа динамики несущих конструкций

Сопряжение с FEM-кодом расчетная область

Сопряжение с FEM-кодом UZOR - результат

- Как кипит вода? Как напишешь так и кипит!
- Разработана и протестирована модель течения двухфазной среды с межфазным тепломассообмена
- Модель нуждается в дальнейшем интенсивном тестировании
- Требуется разработка неявных методов моделирования околозвуковых течений с использованием объёмных потоков для транспорта
- <u>Основная проблема разработка гибридной</u> модели движения 2-фазной среды с подсеточным моделированием