# Особенности моделирования обтекания тел в закрученном дозвуковом потоке газа

Сергей Стрижак МГТУ им. Н.Э. Баумана

III конференция «Облачные вычисления: образование, исследования, разработки» Москва, 6-7 декабря, 2012

# Закрученные течения в природе и в технике

- Ураганы, торнадо, смерчи
- Различные трубы, камеры сгорания, форсунки, транспортные средства
- Многофазные дозвуковые и сверхзвуковые течения
- Неравномерный скошенный поток
- Рециркуляционные зоны
- Вибрации, разрушительное воздействие.
   + Стабилизация пламени.
- Сложность в численном моделирование. 3D расчет.
- Дорогостоящий эксперимент (PIV)







### Вихревые следы за самолетом



Структура вихревого следа

Расчетные методы: URANS, LES, вихревые методы

# Транспортное средство. Вертолет.









Многочисленные аварии и поломки

## Различные транспортные средства и дефектоскоп











UUUDD

 $\Delta D$ 

 $V_{\infty}=0$ 

 $V_{\infty}>0$ 

Вихревая пелена воздушного винта: расчет по теории винта

расчет по теории несущего диска







S. Lain. M. Sommerfeld. 2009

## Диагностический комплекс «Сканлайнер»





# Общие характеристики вихрей

| Параметры              | Вынужденный                        | Свободный                                     | Составной вихрь (вихрь                                                              |
|------------------------|------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|
|                        | вихрь (вращение среды как целого)  | (потенциальныи)<br>вихрь                      | Рэнкина)                                                                            |
| Окружная<br>скорость W | $W = C \cdot r$                    | $W = C_r$                                     | $W = \frac{C}{r} \times \left[1 - \exp\left[-\frac{r^2}{r_0^2}\right]\right]$       |
| Угловая скорость<br>Ω  | С (постоянная)                     | С/ <sub>г<sup>2</sup> (функция радиуса)</sub> | Функция радиуса                                                                     |
| Циркуляция Г           | $2\pi \cdot \Omega \cdot r^2$      | $2\pi \cdot C$                                | $2\pi \cdot C \cdot \times \left[1 - \exp\left[-\frac{r^2}{r_0^2}\right]\right]$    |
| Завихренность $\omega$ | $4\pi \cdot \Omega = \text{const}$ | 0                                             | $4\pi \cdot C / r_0^2 \times \left[ \exp \left[ -\frac{r^2}{r_0^2} \right] \right]$ |

$$\overline{V}_{y,z}(\overline{y},\overline{z}) = \frac{1}{\tau_n - \tau_0} \int V_{y,z}(\overline{y},\overline{z},\tau) d\tau \qquad \varepsilon = \operatorname{arctg} \frac{\overline{V}_y}{V_0} = \frac{1}{\tau_n - \tau_0} \int_{\tau_0}^{\tau_n} \operatorname{arctg} \frac{V_y}{V_0} (\overline{y},\overline{z},\tau)$$

### Эксперимент. Выбор формы и аэродинамической компоновки зонда.



Рис. Установка "Воздуходувка"







Рис. Дозвуковая труба МГТУ им. Н.Э. Баумана Т-500 и установка свободных колебаний. V=22-30 м/с. Re=(2-8)\*10E5.



Рис. Визуализация методом шелковинок. Разные моменты времени.

### Проведение эксперимента в установке «винт-кольцо» (закрученный поток)







Скорость

12 13









Угол скоса потока

gamma 48

gamma,

60

40

20

-40 -60



# Численное моделирование Свободное программное обеспечение



Рис. Основные этапы создания расчетной модели. Использование ресурсов Web лаборатории UniHUB (<u>www.unihub.ru</u>). Расчет на вычислительном кластере.

Математическая модель расчета параметров течения - URANS Обобщенное уравнение, отражающее законы сохранения и модель турбулентности, в интегральной форме

$$\frac{\partial}{\partial t} \int_{\Omega} \rho \phi \, \mathrm{d}\Omega + \int_{\Omega} \rho \phi \vec{V} \cdot \vec{n} \, \mathrm{d}S = \int_{S} \Gamma \, grad \phi \cdot \vec{n} \, \mathrm{d}S + \int_{\Omega} q_{\phi} \, \mathrm{d}\Omega$$
3gecb  $\phi$  - ofoofulenhas nepemenhas  $\phi = \{1, u, v, w, k, \omega, h\} \Omega$  - KOHTPOIDENHAN OFDERM,  
 $\vec{V}$  - BEKTOP CKOPOCTU,  $\Gamma$  - KO3P\$\$\$\$\$\$\$\$\$WHENTE NEPEHOCA,  $\vec{n}$  - BEKTOP HOPMAJU  
 $dS$  - Дифференциальный элемент площади  
 $\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho u k)}{\partial x_{i}} = \tilde{P}_{k} - \beta^{*} \rho k \omega + \frac{\partial}{\partial x_{i}} \left[ (\mu + \sigma_{k} \mu) \frac{\partial k}{\partial x_{i}} \right]$  Модель k-omega SST Mentepa  
 $\frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho u \omega)}{\partial x_{i}} = \alpha \rho S^{2} - \beta \rho \omega^{2} + \frac{\partial}{\partial x_{i}} \left[ (\mu + \sigma_{\omega} \mu_{i}) \frac{\partial \omega}{\partial x_{i}} \right] + 2(1 - F_{1}) \rho \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_{i}} \frac{\partial \omega}{\partial x_{i}}$   
 $\frac{\partial(\rho \tilde{v})}{\partial t} + \frac{\partial}{\partial x_{i}} (\rho \tilde{v} u_{j}) = \frac{1}{\sigma_{v}} \left\{ \frac{\partial}{\partial x_{i}} \left[ (\mu + \rho \tilde{v}) \frac{\partial \tilde{v}}{\partial x_{i}} \right] + C_{b 2} \rho \left( \frac{\partial \tilde{v}}{\partial x_{j}} \right)^{2} \right\} + G_{v} - Y_{v};$  Модель Спаларта-Аллмараса

*ρ*, *u*, *p*, *k*, *ω*, *h*, *t*, *μ* - плотность, скорость, давление, кинетическая энергия турбулентности, скорость диссипации энергии, энтальпия, время, динамическая вязкость

Постановка задачи: Задание граничных и начальных условий, выбор расчетных схем

Математическая модель расчета параметров течения - LES

$$u = \overline{u} + \overline{u}' \quad \overline{u} = \int_D G(\zeta, \Delta) u(\zeta, t) d^3 \zeta$$

$$\Delta = V^{1/3} = \left(\Delta x \Delta y \Delta z\right)^{1/3}$$

$$\partial_t \overline{u} + \nabla \cdot (\overline{u} \otimes \overline{u}) = \nabla \cdot (\overline{S} - B); \ S = -pI + 2\nu D$$
$$D = 0.5 (\nabla u + \nabla u^T); \ B = L + C + R$$

Дифференциальное уравнение для подсеточной кинетической энергии

$$\frac{\partial K}{\partial t} + \nabla \cdot (\bar{KU}) = \nabla \left[ \left( \nu + \nu_{SGS} \right) \cdot \nabla K \right] - \varepsilon - \tau \cdot \bar{S}$$

# Возможности OpenFOAM для моделирования закрученного течения

- URANS и LES
- pisoFoam & rhopisoFoam
- addSwirlandRotation утилита
- Модификация k-omega SST модели с учетом кривизны линии тока (AIAA Journal. 2000. Shur & Spalart)
- LES: inlet : Synthesised turbulence method
- LES: inlet : Mapped back method
- Модификация LES: inlet : Mapped back method (Virtual axial and body azimuthal body forces. Computers & Fluids.38.2009. Baba-Ahmadi, Tabor)

$$\partial_t \overline{u} + \nabla \cdot (\overline{u} \otimes \overline{u}) = \nabla \cdot (\overline{S} - B) + \overline{F}$$

- Launder-Reece-Rodi RSTM
- Launder-Gibson RSTM with wall-reflection terms

Математическая модель расчета обтекания аппарата-зонда. Постановка задачи. Исследуемые тела.





### Расчет АДХ. Сравнение. Т=1 секунда.



Рис. Зависимость АДХ для цилиндра



#### Рис. Значения АДХ для цилиндра с двумя дисками





# Коэффициент давления Ср









### LES – Модель крупных вихрей









Расчет течения с закруткой по закону твердого тела. Различные значения угловой скорости потока. Внедрение нового гр. условия.









### Расчет течения с закруткой. Т=2 сек.







Рис. Значения турбулентной вязкости.



Рис. Значения энергии турбулентной



Рис. Значения давления



Рис. Линии тока









Рис. Зависимость Cy,mz от t

1 – 3 рад/с 2 - 10 рад/с 3 - 16 рад/с 4 – 24 рад/с 19

## Расчет течения с закруткой в установке «винт-кольцо». T=1 сек.





Time = 0.169578 s









Min=100203 Pa Max=104304 Pa Time = 0.00855129 s

# Расчет обтекания аппарата «Сканлайнер». Модель М 1:1.



### Расчетная сетка. 4 млн.



Давление



### Коэффициент давления



Зависимости mz, су

## Расчет обтекания фюзеляжа вертолета



TUB & Eurocopter Gmbh. Clean Sky. 2012. HELIDES. SA-DDES. 38 M cells. 128 cores.

PNU. 2012. BET + CFD.

# Заключение

- ОрепFoam предоставляет широкие возможности для моделирования закрученных турбулентных течений
- Необходимо обращать внимание на задание граничных условий и выбор сетки
- Существуют возможности расширения встроенных моделей турбулентности