Ульяновский государственный технический университет

ПРОЕКТИРОВАНИЕ ПРИЕМНИКОВ ВОЗДУШНЫХ ДАВЛЕНИЙ

М.М. Дубинина, магистрант кафедры «Измерительновычислительные комплексы» Ульяновского государственного технического университета (каф. «ИВК» УлГТУ)

М.Ю. Сорокин, к.т.н., доцент каф. «ИВК» УлГТУ

Цель работы

- Целью работы является:
- проведение математического моделирования приемника воздушного давления с компенсационным контуром;
 -сравнение с данными, полученными в ходе эксперимента.

Исследуемый приемник воздушных давлений

- 3 контровочная гайка
- 4 крепежный кронштейн
- 5 штуцер отбора статического давления
- Диаметр приемника 12 мм, диаметр гофрированной части 18 мм

Проведение эксперимента

Отбор давления производился следующим образом.

1. 8 отверстий диаметром 1.5 мм, шаг по длине приемника 5 мм.

2. Щель шириной 0.5 мм, имеющей вид кругового сектора с углом 90°, шаг по длине приемника 0.5 мм.

Отметим, что в силу отсутствия достоверных данных по величине турбулентности потока аэродинамической трубы при математическом моделировании принята низкая турбулентность набегающего потока.

Математическое моделирование Flow Vision

<u>Параметры моделирования</u> Опорное давление – 101325 Па Температура - +15°C Турбулентность потока – 1 % Диапазон скоростей – 100, 150 и 200 км/ч

<u>Граничные условия</u> Вход – массовая скорость в соответствии с указанными скоростями Поверхность приемника – стенка с логарифмическим законом распределения скорости Выход - граничное условие равенства нулю относительного давления

При математическом моделировании использовались модели турбулентности Shear Stress Transport (SST) и Spalart-Allmaras (SA).

Расчетная сетка

Общее количество ячеек расчетной сетки ~ 250 тысяч По поверхности приемника выполнена адаптация 4-го порядка

Математическое моделирование Open FOAM

<u>Параметры моделирования</u> Опорное давление – 101325 Па Температура - +15°C Турбулентность потока – 1 % Диапазон скоростей – 100, 150 и 200 км/ч

<u>Граничные условия</u> Вход – скорость в соответствии с указанными скоростями Поверхность приемника – стенка с логарифмическим законом распределения скорости Выход - граничное условие равенства нулю относительного давления

При математическом моделировании использовались модели турбулентности Shear Stress Transport (SST) и Spalart-Allmaras (SA).

Начальные условия

U: interna	lField uniform (27.7778 0 0);	p: interna	lField uniform 0;							
Bxod:	type fixedValue; value \$internal	Field;	Bxod:	type zeroGradient;						
Выход:	type inletOutlet;		Выход:	type fixedValue;						
	inletValue uniform (0 0 0);		value \$internalField;							
	value \$internalField;									
Симметрия.	: type symmetryPlane;	Симметрия: type symmetryPlane;								
Приемник:	type fixedValue; value uniform (Приемник:	type zeroGradient;							
k: interna	lField uniform 0.039;	omega: internalField uniform 3.928;								
Вход:	type fixedValue;		Bxod:	type fixedValue;						
	value \$internalField;			value \$internalField;						
Выход:	type inletOutlet;		Выход:	type inletOutlet;						
	inletValue \$internalField;		inletValue \$internalField;							
	value \$internalField;			value \$internalField;						
Симметрия.	type symmetryPlane;	Симметрия: type symmetryPlane;								
Приемник:	type kqRWallFunction;		Приемник:	type omegaWallFunction;						
	value uniform 0;			value \$internalField;						
nut: internalField uniform 0.01;										
	Bxod:	culated; value uniform 0;								
	Выход:	culated; value uniform 0;								
	Симметрия:	mmetryPlane;								
	Приемник:	tUSpaldingWallFunction;								
		niform 0;								

Используемые схемы

fvSchemes:

ddtSchemes: default steadyState; gradSchemes: default Gauss linear; divSchemes: default Gauss upwind; div(phi,U) Gauss linearUpwindV grad(U); div((nuEff*dev(T(grad(U))))) Gauss linear; laplacianSchemes: default Gauss linear corrected; interpolationSchemes: default linear; interpolate(U) linear; snGradSchemes: default corrected; fluxRequired: default no; p ;

Настройки решения

fvSolution: solvers: p

```
{solver GAMG; tolerance 1e-12;
          relTol 0.01:
          smoother GaussSeidel;
          nPreSweeps 0; nPostSweeps 2;
          cacheAgglomeration true;
          nCellsInCoarsestLevel 10;
          agglomerator faceAreaPair;
          mergeLevels 1; };
         "(U|k|epsilon|omega|nuTilda)"
          {solver smoothSolver; tolerance 1e-12;
           smoother GaussSeidel;
          relTol 0.1; nSweeps 2; };}
 SIMPLE {
          nNonOrthogonalCorrectors 2;
          pRefCell 0; pRefValue 0;
               residualControl { p 1e-5; U 1e-5;
               "(k|epsilon|omega|nuTilda)" 1e-5; } }
potentialFlow {
              nNonOrthogonalCorrectors 15;}
relaxationFactors {
                  default 0:
                 p 0.2; U 0.6;
                 "(k|epsilon|omega|nuTilda)" 0.3;}
```

Расчетная сетка

Общее количество ячеек расчетной сетки -**4 893 206**

100 км/ч:

pvd y+ : min: 0.000144355 max: 0.221178 average: 0.0157939 gofr y+ : min: 0.000701532 max: 0.153088 average: 0.0161839

150 км/ч:

pvd y+ : min: 0.0278551 max: 2.11339 average: 0.54257 gofr y+ : min: 0.0258555 max: 1.77257 average: 0.526169

200 км/ч:

pvd y+ : min: 0.0342598 max: 2.61252 average: 0.701618 gofr y+ : min: 0.0289171 max: 2.27708 average: 0.675537

В таблице далее приведены результаты экспериментов и математического моделирования («щель» – соответствует случаю отбора давления отверстиями, «FV SST» – математическое моделирование с использованием SST-модели турбулентности программе Flow Vision, «FV SA» – математическое моделирование с использованием SA-модели турбулентности программе Flow Vision, «OF SA» – математическое Flow Vision, «OF SA» – математическое в программе Flow Vision, «OF SST» и «OF SA» соответственно в программе Open FOAM). Длина приемника отсчитывается от носовой части, все воспринятые давления приведены в Паскалях относительно давления невозмущенного потока.

Π	100 км/ч					150 км/ч						200 км/ч						
длина L, мм	щель	отв.	FV SST	FV SA	OF SST	OF SA	щель	отв.	FV SST	FV SA	OF SST	OF SA	щель	отв.	FV SST	FV SA	OF SST	OF SA
49	47	23	34	23	41	30	90	54	78	48	89	68	188	93	139	86	156	125
52,2	9	0	5	0	14	14	14	-5	10	1	27	30	16	-32	17	1	45	55
57,5	-39	-54	-44	-34	-29	-12	-78	-123	-102	-76	-73	-29	-196	-223	-183	-138	-134	-56
62,5	-239	-201	-322	-210	-196	-127	-612	-508	-748	-501	-503	-308	-1162	-986	-1358	-921	-942	-585
67,5	-45	-57	-50	-39	-73	-24	-51	-104	-111	-87	-155	-56	-102	-165	-207	-156	-261	-101
72,5	41	28	15	2	-22	1	67	54	35	8	-21	2	118	82	63	17	-21	4
76	71	76	57	33	4	14	145	149	132	76	35	35	263	217	238	137	74	58
84	71	80	68	45	43	24	157	147	155	102	120	52	275	242	279	183	202	97
87,5	33	34	27	15	34	14	64	65	61	34	87	31	122	101	109	61	127	58
93	-27	-27	-39	-30	-18	-6	-80	-59	-90	-68	-55	-15	-153	-126	-162	-123	-104	-27
97,5	-200	-207	-275	-185	-223	-69	-494	-483	-6 48	-446	-611	-167	-1032	-896	-1182	-824	-1063	-316
102,5	-27	-30	-58	-44	-49	-24	-63	-82	-130	-100	-111	-55	-141	-160	-237	-180	-188	-97
107,5	12	-13	-8	-10	-8	-12	24	-21	-16	-21	-6	-29	35	-34	-28	-38	-2	-50
111	33	21	20	10	12	-8	75	45	47	23	43	-18	136	70	85	43	93	-28

Распределение давления по длине профилированного участка при скорости набегающего потока 100 км/ч

Распределение давления по длине профилированного участка при скорости набегающего потока 150 км/ч

Распределение давления по длине профилированного участка при скорости набегающего потока 200 км/ч

Анализ результатов исследования

Факторы, влияющие на сходимость результатов:

- значительное расхождение наблюдается на задних гофрах, где возможно образование вихрей;

- ввиду того, что диаметр отверстий для отбора давления составляет 1.5 мм, то происходит некоторое усреднение давления на этом участке;

- отсутствует достоверная информация о величине турбулентности потока в аэродинамической трубе и её зависимости от скорости.

В целом получены удовлетворительные результаты.

В дальнейших планах проведение исследований влияния используемых типов конечных элементов (тетра-, гекса- и т.д.), применяемых схем (1-го или 2-го порядка), граничных условий и типов решателей на получаемые результаты в программе OpenFOAM.

Спасибо за внимание!