Parallel algorithm for 3D computed tomography problem

<u>A.E. Kovtanyuk¹, E.I. Temnenko², and A.A. Khandorin²</u>

¹Institute for Applied Mathematics, Vladivostok, Russia ²Far Eastern Federal University, Vladivostok, Russia

December 5, 2013

Irradiation at various angles: Parallel scheme the scanning

The scheme of the algorithm: Dynamic loading of compute nodes

The experimental acceleration

Efficiency of the algorithm

The number of processes	Total time (sec.)	Experimental acceleration	The parallel fraction of the algorithm
1	482,135	1	1
2	241,738	1,99445	0,9972
4	121,005	3,98442	0,9987
8	62,1094	7,76267	0,9956
16	31,4126	15,3486	0,9972
32	17,2215	27,9961	0,9954
64	9,94997	48,4559	0,9949

Implementation of the algorithm on GPU (nVidia GeForce GTX 660M)

Algorithm of convolution and back projection

Step 1. Computing the convolutions:

$$v_{j,k} = h \sum_{l=-q}^{q} w_b(s_k - s_l)g(\theta_j, s_l), \quad j = 1, ..., p, \quad -q \le k \le q.$$

Step 2. Computing the back projection for $x = x(\theta_j, s)$:

$$f(x) = \frac{2\pi}{p} \sum_{j=1}^{p} ((1-u)v_{j,k} + uv_{j,k+1}), \quad k \le \frac{s}{h} < k+1, \quad u = \frac{s}{h} - k.$$

11

The run-time of the reconstruction

Cross-section number	Run-time (msec)
1	0.0685953
2	0.0661115
3	0.0545759
4	0.0370371
5	0.0359608
6	0.0317436
7	0.0291794
8	0.0292195