Использование метода LS-STAG для численного решения сопряженных задач аэроупругости

Марчевский И.К., Пузикова В.В.

МГТУ им. Н.Э. Баумана

IV Международная конференция «Облачные вычисления. Образование. Исследования. Разработка» Москва, Россия, 5–6 декабря 2013

Марчевский И.К., Пузикова В.В.

2 Метод LS-STAG

3 Постановка задачи

🜗 Тестовые задачи

- Вынужденные поперечные колебания кругового профиля
- Вынужденные продольные колебания кругового профиля
- Бетровой резонанс кругового профиля
- 6 Авторотация роторов ветроэнергетических установок

7 Заключение

Марчевский И.К., Пузикова В.В.

Введение

3 / 24

Где возникают сопряженные задачи аэроупругости?

Рис. 1. Ветроэнергетические установки (ВЭУ)

Рис. 2. Линии электропередачи (ЛЭП)

Марчевский И.К., Пузикова В.В.

Метод LS-STAG

LS-STAG¹ — новый² метод расчёта течений, соединяющий в себе преимущества

- МАС-метода (метода маркеров и ячеек)
 - 🛿 прямоугольные разнесённые сетки 🔿 простота построения сетки
 - 🛿 пятиточечный шаблон (в 2D) 🔿 работают эффективные решатели
- метода погруженных границ
 - граница области течения не связана с расчётной сеткой упрощение работы с областями сложной формы
 - расчёт течений с подвижными границами на неподвижной сетке нет перестроения сетки на каждом шаге расчёта
- 🕨 метода функций уровня
 - и явное представление погруженной границы ⇒ простота вычисления геометрических характеристик ячеек сетки

и имеющий характерные особенности

- $0 = O(\Delta t^2)$ как по скоростям, так и по давлению
- единообразная дискретизация в прямоугольных и усечённых ячейках
- на усечённых ячейках происходит не интерполяция и снос, а непосредственное вычисление решений и учёт в дискретизации граничных условий
- выполняются численные аналоги законов сохранения полной массы, импульса и кинетической энергии во всей области течения

Рис. 3. Расчётная область: $\Omega = \Omega^{f} \cup \Omega^{ib}$

Level Set STAGgered — метод погруженных границ с функциями уровня для разнесённых сеток

 2 Cheny Y., Botella O. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties// J. Comput. Phys. – 2010. – № 229. – P. 1043–1076.

Марчевский И.К., Пузикова В.В.

Метод LS-STAG

LS-STAG¹ — новый² метод расчёта течений, соединяющий в себе преимущества

- МАС-метода (метода маркеров и ячеек)
 - 🛿 прямоугольные разнесённые сетки 🔿 простота построения сетки
 - 🛿 пятиточечный шаблон (в 2D) 🔿 работают эффективные решатели
- метода погруженных границ
 - граница области течения не связана с расчётной сеткой упрощение работы с областями сложной формы
 - расчёт течений с подвижными границами на неподвижной сетке нет перестроения сетки на каждом шаге расчёта
- метода функций уровня
 - явное представление погруженной границы вычисления геометрических характеристик ячеек сетки

и имеющий характерные особенности

- \heartsuit $O(\Delta t^2)$ как по скоростям, так и по давлению
- 🖉 единообразная дискретизация в прямоугольных и усечённых ячейках
- на усечённых ячейках происходит не интерполяция и снос, а непосредственное вычисление решений и учёт в дискретизации граничных условий
- выполняются численные аналоги законов сохранения полной массы, импульса и кинетической энергии во всей области течения

Рис. 3. Расчётная область: $\Omega = \Omega^{f} \cup \Omega^{ib}$

¹Level Set STAGgered — метод погруженных границ с функциями уровня для разнесённых сеток

²Cheny Y., Botella O. The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties// J. Comput. Phys. - 2010. - № 229. - P. 1043-1076.

Марчевский И.К., Пузикова В.В.

LS-STAG-дискретизация в 2D

Рис. 4. (а) жидкая прямоугольная ячейка; (b) северная трапеция; (c) северо-западный пятиугольник; (d) северо-западный треугольник

Марчевский И.К., Пузикова В.В.

Модификация метода LS-STAG для подвижных погруженных границ

Метод LS-STAG удобно использовать для решения сопряжённых задач аэроупругости:

- используется идея метода ALE³
 - вблизи Г $^{\mathrm{ib}}$ сетка следует за Г $^{\mathrm{ib}}$ (лагранжево описание)
 - на достаточном удалении от Г^{ib} сетка неподвижна (эйлерово описание)
 - сохраняет точность и устойчивость аналога с неподвижной сеткой⁴, если скорость сетки и алгоритм её перестроения выбираются из условия выполнения численного аналога геометрического закона сохранения⁵
- 🗸 сетка не деформируется
- движутся только узлы сетки на твёрдых границах усечённых ячеек

выполнение геометрического закона сохранения упрощается

Марчевский И.К., Пузикова В.В.

³Arbitrary Lagrangian Eulerian — произвольные лагранжево-эйлеровы сетки

⁴ Farhat C., Geuzaine P., Grandmonty C. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids // J. Comput. Phys. — 2001. — № 174. — P. 669–694

⁵Изменение объёмов ячеек во времени должно быть равно объёму, «заметаемому» границами ячеек

Постановка задачи

Рассмотрим внешнее обтекание жёсткого профиля произвольной формы, который может совершать колебания с 1, 2 или 3 степенями свободы, равномерным потоком вязкой несжимаемой среды постоянной плотности *р*.

$$\ddot{ec{q}}=ec{\Phi}(ec{q},ec{q})+ec{Q}^{ ext{flow}}+ec{Q}^{ ext{ext}}$$

- *q* обобщённые координаты профиля,
- [†](*q*, *q*) определяется связями, наложенными на профиль,
 [†]
 [†]
- ^d^{flow} обобщённая
 аэродинамическая сила,
- \bullet \vec{Q}^{ext} внешние массовые силы.

Марчевский И.К., Пузикова В.В.

МГТУ им. Н.Э. Баумана

атематическая модель в безразмерной форме:

$$\begin{split} \nabla \cdot \vec{v} &= 0, \\ \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} + \nabla p - \frac{1}{\text{Re}} \Delta \vec{v} &= 0, \\ \vec{v}(x, y, 0) &= \vec{v}_0(x, y), \ (x, y) \in \Omega, \\ \vec{v}|_{\kappa} &= \vec{v}^{\text{ib}} = \vec{v}^{\text{ib}}(x, y, t), \\ \vec{v}|_{\Gamma \setminus \Gamma_4} &= \vec{V}_{\infty}, \ \frac{\partial \vec{v}}{\partial \vec{n}} \Big|_{\Gamma_4} &= \vec{0}, \ \frac{\partial p}{\partial \vec{n}} \Big|_{\Gamma \cup \kappa} = 0, \end{split}$$
(1)

- $x = \overline{x}/\overline{D}$, $y = \overline{y}/\overline{D}$ безразмерные координаты,
- \bullet $t = \overline{t} \ \overline{V}_{\infty} / \overline{D}$ безразмерное время,
- $p = p(x, y, t) = \overline{p} / (\overline{\rho} \ \overline{V}_{\infty}^2)$ безразмерное давление,
- $\vec{v} = \vec{v}(x, y, t) = u \cdot \vec{e}_x + v \cdot \vec{e}_y$ безразмерная скорость $(u = \overline{u}/\overline{V}_{\infty}, v = \overline{v}/\overline{V}_{\infty}),$
- \bullet Re = $\overline{V}_{\infty}\overline{D}/\overline{\nu}$ число Рейнольдса.

Движение центра профиля задаётся законом

$$\begin{aligned} x_{c} &= x_{c_{0}}, \\ y_{c} &= y_{c_{0}} + \begin{cases} A, & t < 10D/V_{\infty}, \\ A\cos\left(2\pi S_{e}\left[tV_{\infty} - 10D\right]/D\right), & t \geq 10D/V_{\infty}, \end{cases} \end{aligned}$$

- (x_{c0}, y_{c0}) начальное положение центра профиля,
- А амплитуда колебаний,
- *S_e* кинематическое число Струхаля.

Расчеты проводились на неравномерной сетке 240 imes 296 с шагом по времени $\Delta t=0.005.$

РИС. 6. Сравнение рассчитанных коэффициентов С_{ха}, С^{rms} и С^{rms} с результатами других исследователей

Марчевский И.К., Пузикова В.В.

⁶ *Gu W., Chyu C., Rockwell D.* Timing of vortex formation from an oscillating cylinder // Physics of Fluids. – 1994. – № 6. – P. 3677–3682.

[']Guilmineau E., Queutey P. A numerical simulation of vortex shedding from an oscillating circular // J. Fluid Struct. – 2002. – № 16. – P. 773–794.

Таблица 2. С_{ха}, С_х и С_у и С_у при $S_e/{
m Sh}=1.2$

Сетка	C _{xa}	C_x^{rms}	C _y rms	
Данная работа				
240 imes 296	1.422	0.142	0.941	
Cheny & Botella (LS-STAG)				
60 × 120	1.309	0.366	0.884	
100 imes150	1.202	0.101	0.754	
170 imes 190	1.386	0.124	0.889	
300 × 260	1.422	0.142	0.941	
550 × 350	1.387	0.132	0.975	
Yang & Balaras				
800 × 640	1.426	0.128	0.964	
Guilmineau & Queutey				
180 imes 120	1.35	0.129	0.931	

Таблица 1. С_{ха}, C_x^{rms} и C_y^{rms} при $S_e/{
m Sh}=1.1$

Сетка	C _{xa}	C _x ^{rms}	C _y rms	
Данная работа				
240 imes 296	1.446	0.189	0.894	
Guilmineau & Queutey				
120 imes 50	1.595	0.163	0.574	
120 imes100	1.366	0.145	0.882	
120 imes200	1.351	0.135	0.881	
180 imes100	1.401	0.149	0.901	
180 imes 200	1.404	0.153	0.893	
240 imes 100	1.396	0.144	0.893	
240 imes 200	1.420	0.149	0.897	

Марчевский И.К., Пузикова В.В.

Рис. 8. Линии тока при m Re=185 и различных значениях S $_{e}/
m Sh$ (профиль в крайнем нижнем положении)

Марчевский И.К., Пузикова В.В.

Вынужденные продольные колебания кругового профиля

Движение центра профиля задаётся законом

$$\begin{aligned} x_{c} &= x_{c_{0}} + \begin{cases} A, & t < 10D/V_{\infty}, \\ A\cos\left(2\pi S_{e}\left[tV_{\infty} - 10D\right]/D\right), & t \geq 10D/V_{\infty}, \end{cases} \\ y_{c} &= y_{c_{0}}, \end{aligned}$$

Расчеты проводились на неравномерной сетке 240 imes 296

с шагом по времени $\Delta t = 0.005.$ $V_{\infty} = 1.0, D = 1.0, \text{Re} = 100,$ $A = 0.8D, S_{e} = 0.2.$ 8

[°]Dutsch H., Durst F., Becker S., Lienhart H. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers // J. Fluid Mech. — 1998. — № 360. — P. 249–271.

Марчевский И.К., Пузикова В.В.

Ветровой резонанс кругового профиля

РИС. 9. Зависимость максимума амплитулы колебаний A_{max}/D кругового профиля от безразмерной собственной частоты колебаний системы St_ω при $\mathrm{Re}=1000$

Движение профиля описывается уравнением

$$m\ddot{y}+b\dot{y}+cy=F_y,$$

- *m* масса профиля,
- b коэффициент демпфирования,
- с жёсткость связи,
- *F_y* подъёмная сила,
- у отклонение профиля от положения равновесия.

 $V_{\infty} = 3.0, D = 1.0, \text{Re} = 1000, m = 39.75, b = 0.731^{a},$ $\text{St}_{\omega} = \frac{\omega}{2\pi} \cdot \frac{D}{V_{\infty}} = 0.150, \dots, 0.280, \omega \approx \sqrt{c/m}.$

Расчеты проводились на неравномерной сетке 272×292 с шагом по времени $\Delta t = 0.0001$.

Полученные результаты хорошо согласуются с известными экспериментальными и расчётными данными.

^a Klamo J. T., Leonard A., Roshko A. On the maximum amplitude for a freely vibrating cylinder in cross flow // J. Fluid Struct. — 2005. — № 21. — P. 429–434.

Марчевский И.К., Пузикова В.В.

Ветровой резонанс кругового профиля

Рис. 10. Отклонение от положения равновесия кругового профиля при ${
m Re}=1000$ и различных значениях безразмерной собственной частоты колебаний системы ${
m St}_\omega$.

Роторы ВЭУ

Марчевский И.К., Пузикова В.В.

Вращение роторов ВЭУ

Рис. 11. Обтекание роторов различных форм при Re = 100: (а) пластина; (b) пропеллер с 4 лопастями; (c) ротор Савониуса с 2 лопастями; (d) ротор Савониуса с 3 лопастями. Движение ротора описывется уравнением

$$I\ddot{\phi} + k\dot{\phi} = M^{\text{flow}}$$

- I полярный момент инерции ротора,
- *k* коэффициент вязкого трения в оси,
- $M^{
 m flow}$ аэродинамический момент,
- ϕ угол поворота ротора.

Качественные оценки на грубых сетках

- определение областей сгущения сетки;
- предсказание динамики конструкции в потоке;
- оценка числа Куранта.
- 🗴 На грубой сетке могут возникать большие флуктуации $M^{
 m flow}.$

Авторотация и автоколебания пластины

Re = 200,
$$I = 10, k = 0.$$

Расчеты проводились на неравномерной сетке 272 imes 292 с шагом по времени $\Delta t=0.0001.$

Авторотация пропеллера

$$\mathrm{Re}=200$$
, $I=10$, $k=0$, 2 лопасти.

Расчеты проводились на неравномерной сетке 272 imes 292 с шагом по времени $\Delta t = 0.0001.$

Авторотация ротора Савониуса с 2 и 3 лопастями

$$Re = 200, I = 10, k = 0.$$

Расчеты проводились на неравномерной сетке 272 imes 292 с шагом по времени $\Delta t = 0.0001.$

Авторотация ротора Дарье с двумя лопастями

Граница профиля K задана набором точек $\{K_1, \ldots, K_N\}$, $K_i = (x_{K_i}, y_{K_i})$, $i = \overline{1, N}$.

Re = 200, I = 10, k = 0.

Для аппроксимации границы профиля используется кривая Безье:

$$P_{\mathcal{K}}(t) = \sum_{i=0}^{N-1} y_{\mathcal{K}_{i+1}} C_i^N t^i (1-t)^{N-i},$$

$$t \in [0, 1], t = t(x) = \frac{x - a}{b - a}, x \in [a, b], C_i^N = \frac{N!}{i!(N - i)!}$$

 возможность моделирования как гладких участков границы, так и острых кромок;

сходимость производных;

 расстояние от произвольной точки до границы легко вычисляется.

Расчеты проводились на неравномерной сетке 272 imes 292 с шагом по времени $\Delta t = 10^{-4}$.

Марчевский И.К., Пузикова В.В.

Заключение

- Смоделированы явления ветрового резонанса кругового профиля и авторотации роторов ВЭУ.
- Приведённые расчёты показывают, что даже на сравнительно грубых сетках метод LS-STAG позволяет получить качественно и количественно верное решение.
- Разработанный программный комплекс является переносимым и позволяет производить расчёты на вычислительных комплексах различных типов.
- Направления дальнейших исследований:
 - дополнение метода LS-STAG моделью турбулентности для расчёта течений при высоких числах Рейнольдса (Re > 10⁵);
 - модификация метода для расчёта течений вязкоупругих и неньютоновых жидкостей;
 - обобщение метода на трёхмерный случай.

Марчевский И.К., Пузикова В.В.

Марчевский И.К., Пузикова В.В.