
A Method for XQuery Transform Implementation Based on Shadow Mechanism

Maria Rekouts, Maxim Grinev, Alexander Boldakov
Institute for System Programming of Russian Academy of Sciences, Russia

Abstract

The XQuery Update Facility has been recently published
by the World Wide Web Consortium as a working draft.
Among other features, the working draft presents a novel
powerful transform expression. A transform expression cre-
ates a new modified copy of an XML subtree, where the
modifications are specified as update operations. In this pa-
per we investigate the use of transform expressions and pro-
vide a method to support transform expressions efficiently:
the method avoids copying of the whole modified XML sub-
tree. Our method is based on the idea of shadow mechanism
proposed in early work on recovery.

1 Introduction

Over the past several years, both the research and the
standards communities have been showing a great interest
in extending XQuery [1] with additional advanced facilities.
One of the most discussed and, obviously the one XQuery
lacked most, is the XQuery Update Facility that has been
recently presented by the World Wide Web Consortium as
a working draft [3].

The XQuery Update Facility classifies all XQuery ex-
pressions into the following two mutually exclusive cate-
gories: an updating expression and a non-updating expres-
sion. An updating expression is an expression that can mod-
ify the state of existing nodes, while a non-updating ex-
pression preserves original contents. The XQuery Update
Facility presents five new kinds of expressions, called:in-
sert, delete, replace, rename, andtransform. The first four
of these are updating expressions, and the last (transform)
is a non-updating expression. All of the four updating ex-
pressions are quite customary to XQuery users as they all
had appeared in one form or another both in research pro-
posals [4, 5], and in software products that support XQuery
[6, 7, 8]. While thetransformexpression provides novel
powerful XQuery semantics, it has not been studied enough
by researches and is not present in today’s software prod-
ucts.

A transform expression creates a new modified copy of

a node (and its descendants) and allows the user to access
both modified and unmodified nodes. This modification is
specified as an update operation. Generally speaking, the
user can obtain ”modified” data without modifying the data
itself in a single query. It is worth pointing out, that thereis
an alternative for transform expressions in XQuery 1.0: the
same query can by written by means of recursive function
that constructs the modified copies of existing nodes. Com-
paring the two approaches, transform expression provides
the following advantages:

• A query with a transform expression is much easier to
write, debug and understand in contrast to a query with
a recursive function (in Section 1.2 we give an example
of such queries).

• With transform expressions it is possible to avoid bulk
copying of data. That is, due to its higher declar-
ative form, transform expressions give implementors
the possibility to implement the expression in differ-
ent ways, in particular in a way that does not carry out
real copying of data, or at least minimizes the copying.
Otherwise, a query with recursive XML tree traver-
sal and explicit construction of new elements implies
straightforward way of execution that leads to copying
of data. Optimization of such a query is very chal-
lenging, as it is quite a hard task to determine which of
the newly created elements are modified and which are
copied.

Obviously, supporting transform expressions without
performing the actual copying can tremendously increase
the speed of its evaluation and save memory resources. This
is what the method presented in our paper aims to achieve.

1.1 Outline

In the next section we present a motivating example that
demonstrates the effectiveness of using transform expres-
sions for content engineering tasks. In Section 2 we provide
our method to support transforms without copying and illus-
trate it by examples. In Section 3 related work is reviewed.
Finally, Section 4 concludes the paper.

1.2 Motivating Example

Our motivating example comes from the field of content
engineering [9]. The goal of content engineering is to au-
tomate content creation, management and publishing tasks
usually performed by hand. One of the basic ideas issingle
sourcing, where there is a single version of content in the
content engineering system, and the system provides a set of
mechanisms that publish the content to various media.Iden-
tity based markuptechnique contributes to single sourcing
support by solving the problems with links in the content:
instead of explicit references, the content fragments are ”la-
beled” using names that reflect and clarify the meaning of
the content [9].

Consider a project where the goal is to create a collection
of movie reviews and to publish it to various media: web
page and CD-ROM. When published on a web page, each
director name in the reviews must reference the director’s
biography in the internet movie database. When published
to a CD-ROM, each director name must reference his bi-
ography stored locally on the CD-ROM. To accomplish this
task, we use the following identity based markup technique:
initially each director in the movie reviews is labeled with
director tag, that contains this director’s identificator as
attribute; the information relative to each director is stored
in a separate document ’directors.xml’ and contains the URI
to the biography in the internet movie database and a refer-
ence to a local file with biography.

Consider the example structure of the XML documents.
In ’reviews.xml’ every review node contains review meta-
data and the text of the review in XHTML format with in-
corporateddirector tags:

<review>
<title>Titanic</title>
<genre>romance</genre>
<text>
...
<p><director id="James Cameron">James Cameron’s</director>
194-minute, $200 million film of the tragic voyage is in
the tradition of the great Hollywood epics.</p>
...
</text>
<review>

In ’directors.xml’ eachdirector node is labeled with
id attribute and contains biography element with differ-
ent forms of biography references for various media. The
url element contains the following subelements: the URI
to the director’s biography intended for publishing on the
web page, thefile element with a path to the biogra-
phy data to publish on the CD-ROM and thetext element
with brief biography description intended to publish on the
printed media.

...
<director id="James Cameron">
<biography>
<url>http://en.wikipedia.org/wiki/James_Cameron</url>

<file>/biography/james_cameron.html</file>
<text>
James Francis Cameron (born August 16, 1954)

is a Canadian-born American film director
noted for his action/science fiction films,

which are often extremely successful financially...
</text>
</biography>
</director>
...

The task is to generate an XHTML version of review text
replacing alldirector elements with the hyperlinks ac-
cording to the directors’ data from directors.xml. In the gen-
eral case we do not know the exact structure of areview
element, that is, we do not know in advance where the
director elements will appear within thereview el-
ement. Thus it is necessary to scan over a hierarchy of ele-
ments, applying the required transformation at each level of
the hierarchy. In XQuery 1.0 this can be accomplished by
defining a recursive function. An example of such a func-
tion performing the transformation looks as follows:

declare function local:traverse-replace($n as node())
as node()
{
typeswitch($n)
case $d as element(director)
return
let $b :=
document("directors.xml")/directors

/director[@id=$d/@id]/biography
return
{$d/text()}
case $e as element()
return element
{ fn:local-name($e) }
{ for $c in $e/(* | @* | text())
return local:traverse-replace($c) }
case $d as document-node()
return document
{ for $c in $d/* return local:traverse-replace($c) }
default return $n
};

for $r in doc("reviews.xml")/reviews
/review[genre="romantic"]

return
local:traverse-replace($r)

In the above query the recursive function ’traverse-
replace’ scans over the whole data and returns the appro-
priate result based on the type of the current node. This
function reconstructs the wholereview nodes copying all
data. Note thatdirector elements constitute a relatively
small part of thereview elements. It means that the re-
cursive function constructs the result preserving most of the
data in its original form and transforming only small pieces
of it. This leads to an extra overhead incurred by unnec-
essary copying of data. Optimization of such a query is
not trivial and often practically impossible, as it is quitea
hard task to determine which of the newly created elements
are modified and which are copied. Another disadvantage
of transformation queries written via recursive functionsis
their cumbersome syntax. The XQuery code looses its com-
pactness and becomes hard to understand.

2

The transform expressions introduced in the XQuery Up-
date Facility allows one to write the required transforma-
tion in much more compact way. Moreover, it gives more
chances to implement it in an efficient way. The same trans-
formation query written with transform expression looks as
follows.

for $r in doc("reviews.xml")//review[genre="romance"]
return
transform
copy $rom:=$r
do
for $d in $rom//director
do replace {$d}
with

$d/text()

return $rom

In the above queryfor clause binds the XQuery vari-
able$r to a sequence ofreview elements of romantic
genre. According to the XQuery Update Facility working
draft the semantics of the transform expression for each
review node are as follows. Thecopy clause produces
the copy of the sequence of the sourcereview nodes. This
copied node sequence consists of the samereview nodes
as original, but with different node identities. Thedo clause
contains the updating expression applied to the newly cre-
ated nodes at the previous step. The update expression re-
places all occurrences of thedirector elements with the
corresponding hyperlinks. According to the specification,
director elements are calledtarget nodes, and hiperlink
elements are calledreplacement nodes. The lastreturn
clause constructs the result, i.e. in our case just returns mod-
ified copies ofreview elements.

2 A Method to Implement Transform Ex-
pressions Without Copying

In this section we present our method to implement
transform expressions without copying of the data. The
method has to address the following challenges caused by
the fact that the data is not actually copied:

• In a query that contains a transform expression, the
user can access both the source and the copied value.
Logically, the source value is not modified by the trans-
form expression, while the copied value is modified.
Since we do not physically copy the source value into
the copied value, our method must represent the same
nodes both as the source value and as the copied value
depending on how these values are accessed. In par-
ticular, the source value nodes and the copied value
nodes must be distinguished in order to support node
comparison operations correctly.

• While navigating over the copied value, our method
must make sure that the navigation does not leave the

bounds of the XML tree that represents the copied
value. More precisely, the method must ensure that
parent, ancestor, following andprecedingaxes do not
lead out of the root of this XML tree.

• While navigating over the copied value, the replace-
ment nodes must be visible instead of the target nodes.

Our method is based on the idea ofdata shadow mecha-
nism, which was first proposed in the early papers on recov-
ery and data versioning where there is an ability to return
to original versions [10]. In particular, shadow mechanism
was used in early versions of System R [11]. The basic idea
of the data shadow mechanism is simple: when the source
data is updated, the system does not overwrite the exist-
ing data, but stores new (replacement, insertion or deletion)
nodes somewhere else on the disk, establishing a correspon-
dence between the existing nodes and the new nodes. Since
the old data remains unchanged, there are two versions of
the data: the new version and the old version that becomes
the”shadow” for the new one.

Our method resolves the challenges discussed above and
extends the data shadow mechanism by providing the pos-
sibility to access both the new and the shadow version of
the modified data in the scope of a single query. This is in
contrast to the data shadow mechanism used for recovery
provided the access only to the new version and the possi-
bility to return to the shadow version.

Now let us proceed to the detailed description. First we
present the basic assumptions our method relies on, then
we describe the data organization used in our method, and
at last define how these data structures must be processed
within an XQuery executor to support transform expres-
sions without copying.

2.1 Basic Assumptions

• We assume that at the physical level all nodes of the
XML tree are linked via pointers. A pointer to a node is
an implementation-dependent object, and its definition
is out of the scope of our paper. However, the majority
of XQuery implementations operate with pointers to
nodes presented in one form or another, for example
[6], [13], [14].

• We also assume that at the physical level an XQuery
executor operates with pointers to nodes. That is, a
query plan operation takes a sequence of pointers as
input and produces a sequence of pointers as the result.

• For each transform operation in a single query the ex-
ecutor generates a unique transform identifier (UTI).
We use such identifier to mark a node pointer.

• Every update expression can be rewritten into an
equivalent replace expression [12]. Thus, without loss

3

review-ptr1 review-ptr2

Temporary Space

XHTML

review

genre=”romance”

review

genre=”romance”

dir-ptr1 dir-ptr2 dir-ptr3 dir-ptr4

director

a a a a

Shadow Mapping Table

dir-ptr1

dir-ptr2

dir-ptr3

dir-ptr4

repl-ptr1

repl-ptr2

repl-ptr3

repl-ptr4

Transform Copied Value

Root Table

review-ptr1

review-ptr2

repl-ptr1 repl-ptr2 repl-ptr3 repl-ptr4

review review

director director director

XHTML

UTI

UTI

UTI

UTI

UTI

UTI

source value: copied value:

Figure 1. Data organization needed to sup-
port transform expressions without copying.

of generality, we present our method for transform ex-
pressions where modifications are specified as replace
expressions.

2.2 Data Organization

Figure 1 demonstrates the data organization that we use
for our method for the example data and transform expres-
sion given in Section 1.2.

In Figure 1, the reviews (XML trees with thereview
root node) that are copied in our example transform expres-
sion are typeset in bold.review-ptr1and review-ptr2are
the pointers to thesereview root nodes. The review XML
trees are painted white. Each ’review’ XML tree contains
two director nodes. Thesedirector nodes are re-
placed with the newa nodes in the example, and thus, are
called thetarget nodes. Target subtrees spanned by the tar-
get nodes are painted grey.dir-ptr1, dir-ptr2, dir-ptr3 and
dir-ptr4 are pointers to thedirector nodes. The newa
nodes, thedirector nodes must be replaced with, are
built in the temporary space, and are called thereplacement
nodes, the replacement subtrees are painted black.repl-
ptr1, repl-ptr2, repl-ptr3 and repl-ptr4 are pointers to the
replacement nodes.

As we can see, review XML trees are not physically
copied. Thus, the review XML tree nodes (the white tree)
are accessed both as the source value, and as the copied
value.

The union of all the white and grey tree nodes constitutes
the complete source value. The union of the white and black
tree nodes constitutes the complete copied value. As the
target subtrees remain unchanged and the new replacement
subtrees are stored separately, the target subtrees become
the shadows for the replacement subtrees.

Our method uses the following two tables:Transform
Copied Value Root Table(TCVRT) registers all the point-
ers to the copied value root nodes of all of the transform
expressions in the considered statement (each transform ex-
pression is identified by the UTI). Thus, for our exam-
ple TCVRT containsreview-ptr1andreview-ptr2with the
UTI. Shadow Mapping Table(SMT) provides the corre-
spondence between the shadow nodes (the target nodes) and
the new nodes (the replacement nodes).

2.3 Execution

Before we describe the execution of transform expres-
sions we present a normal form for general transform ex-
pressions where the copied value is returned as a transform
result.

transform let $i:=transform
copy $copied:=source-expr copy $copied:=source-expr
do update-expr($copied) => do update-expr($copied)
return expression($copied) return $copied
return expression($copied)

The XQuery executor processes queries in a standard
fashion [2], however the following extra steps are taken in
order to process queries that contain transform expressions:

1. The normalized transform expression is processed as
follows:

• The XQuery executor generates a UTI for each
transform operation in a query.

• The XQuery executor evaluatessource-expr,
obtaining a sequence of pointers as a result of the
evaluation. Every pointer of this result sequence
is marked with a corresponding UTI.

• Every pointer of thesource-expr result se-
quence is associated with the UTI and the record
of the form [pointer, UTI] is added to the TCVRT
table.

• The XQuery executor evaluates target nodes of
the update-expr. For each target node it
creates a sequence of replacement nodes of the
update-expr in the temporary space. Parent,
following-sibling and preceding-sibling pointers
of the replacement nodes are set as if they were
constructed by the usual update operation, while
the target nodes and their parent, following-
sibling and preceding-sibling nodes remain un-
changed.

• Records of the form: [target node pointer, its cor-
responding replacement node pointer, UTI] are
added to the SMT table.

4

2. All XQuery query plan operations can be divided into
two groups: operations of the first group construct new
items and return pointers to these new items (for ex-
ample: element constructors, arithmetical operations,
logical operations); operations of the second group do
not construct new items and return pointers to the ex-
isting items, derived from the input pointers (for ex-
ample: XPath operations, conditional operations such
asif andtype-switch, sequences concatenation).
For the operations of the second group we introduce
counterpartsthat operate on the marked pointers as
follows: the result pointers that were derived from
marked pointers are also marked by this counterpart
operation. In the query plan all operations of the sec-
ond group are replaced with their counterparts.

3. A new query plan operationcheck is introduced.
This operation implements pointer mapping according
to the SMT table as follows:check takes a sequence
of pointers as input, for every pointercheck looks up
this pointer in the target-pointer column of the SMT
table, and if it is found returns the corresponding re-
placement pointer, if it not found, returns the pointer
itself. In the query plancheck operation is applied to
the result of every counterpart operation.

4. For node comparison operations (namelyis, << and
>>) we introduce their counterparts as follows:

• if one of the operands of theis operation is
marked while the other one is unmarked, the op-
eration returns false; in other cases it operates as
usual;

• if the right operand of<< is marked and the left
one is unmarked, the operation returns false; if
the right operand is unmarked and the left one
is marked, the operation returns true; if the right
operand of>> is marked and the left one is un-
marked, the operation returns true; if the right
operand is unmarked and the left one is marked,
the operation returns false.

5. For the operationsparent, preceding-sibling
andfollowing-sibling that represent the cor-
responding axes, we introduce their counterparts as
follows: for the input pointers that are marked and
have their entry in the TCVRT table, the operation
returns an empty sequence, otherwise it operates as
stated in the 2. We assume, theancestor opera-
tion is implemented by means of theparent oper-
ation, and thefollowing andpreceding opera-
tions by means of theancestor operation. Thus,
ancestor, following andpreceding also op-
erate according to the TCVRT table.

2.4 Method Exemplification

In this section we illustrate the essence of our method
by the example queries. The example queries are based on
the transform expression presented in Section 1.2, and we
explain how the result of the transform expression is further
processed. For short, we indicate the transform expression
from the motivating example as{transform-review}.

The first example demonstrates the navigation over the
result of the transform expression, which is a logically
copied value, and shows the necessity ofcheck operations:

{transform-review}/text//*/@href

According to our method the query plan shown in Figure
2 (the left one) is generated. In this query plancheck oper-
ations denoted in ovals return their original input sequence
without changes. Thecheck operation denoted in rhomb
substitutes its input pointers todirector nodes with the
pointers to the correspondinga nodes. The next example
demonstrates the necessity of introducing counterpart oper-
ations:

({transform-review}, doc(’reviews.xml’)/reviews/
review)/*/../..

In this query a sequence concatenation operation pro-
duces a sequence of both marked and unmarked pointers.
Theparent operation denoted in rhomb operates accord-
ing to the TCVRT table. For marked input pointers (which
are the copied-value roots) it returns an empty sequence.
The query plan for this query is shown in Figure 2 (the right
one).

Both query plans may be optimized in order to remove
unnecessarycheck operations.

3 Related Work

As we mentioned above, the main challenge in imple-
menting transformations via updates consists in providing
an efficient way to access both the original and the modified
states of the data. The topic of transforming data via updates
and related implementation issues have received little atten-
tion so far. Implementation methods that were proposed in
the literature put some restrictions on accessing the data in
at least one of the states.

In a paper devoted to transaction management in the
Orion object-oriented system [15], the authors proposed a
special type of transactions called hypothetical transactions
as a method to support data transformations via updates.
In contrast to normal transactions, which can be committed
or aborted, hypothetical transactions always abort. Since
the changes are never recorded permanently, the user has
the freedom of performing updates with the only goal to
query the modified state of data. In order to minimize

5

doc

check

child

check

select

reviews

child

check

select

concat

transform-

review

check

child

check

parent

check

parent

review

*

*

transform-

review

check

child

check

select

text

child

check

child-attribute

node

*

*

Figure 2. Example query plans

the overhead incurred by abort operation, the authors used
shadow mechanism. Because of using shadow mechanism
the source values are never updated but in this method they
have not been made accessible in the query.

In our previous work [12] we introduced a method to
implement transform expressions which is based on seri-
alization mechanism. The method allows obtaining both
modified and source values but with the restriction that the
modified value can only be processed as a string value.

4 Conclusion

This paper presents a method to support XQuery trans-
form expressions without copying. Our method is based on
ideas of shadow mechanism proposed in early papers on re-
covery. The method is being prototyped in the Sedna XML
database system [6].

References

[1] Boag, S., Chamberlin, D., Fernandez, M., Florescu, D.,
Robie, J., Simeon, J.: XQuery 1.0: An XML Query
Language. http://www.w3.org/TR/xquery/, (November
2005)

[2] Draper, D., Fankhauser, P., Fernandez, M., Malho-
tra, A., Rose, K., Rys, M., Simeon, J., Wadler,
P.: XQuery 1.0 and XPath 2.0 Formal Semantics.

http://www.w3.org/TR/xquery-semantics/, (November
2005)

[3] Chamberlin, D., Florescu, D., Robie, J.: XQuery Up-
date Facility.

http://www.w3.org/TR/xqupdate/, (January 2006)

[4] Benedikt, M., Bonifati, A., Flesca, S., Vyas, A.:
Adding Updates to XQuery: Semantics, Optimization,
and Static Analysis. Second International Workshop on
XQuery Implementation, Experience and Perspectives
(XIME-P 2005).

[5] Tatarinov, I., Ives, Z., Halevy, A., Weld, D.: Updating
XML. Proceedings of the ACM SIGMOD international
conference on Management of data (2001)

[6] Fomichev, A., Grinev, M., Kuznetsov, S.: Sedna: A
Native XML DBMS. Proceedings of the Conference on
Current Trends in Theory and Practice of Informatics
(SOFSEM) (2006)

[7] Mark Logic’s xqzone: http://xqzone.marklogic.com/

[8] XML Support in Microsoft SQL Server 2005.

http://msdn.microsoft.com/xml/default.aspx?pull=
/library/en-us/dnsql90/html/sql2k5xml.asp

[9] Stilo Whitepapers: Content Engineering.

http://www.stilo.com/download/stilowhitepapers.html

[10] Raymod A. Lorie: Physical Integrity in a Large Seg-
mented Database. ACM Transactions on Database Sys-
tems, Vol.2, No. 1, (1977) 91–104

[11] Jim Gray, Paul McJohns, Raymond Lorie et al.: The
Recovery Manager of the System R Database Manager.
Computing Surveys, Vol. 13, No. 2, (1981)

[12] Boldakov, A., Grinev, M.: Transforming XML Data
Using Side-Effect Free Updates. Programming and
Computer Software, Vol. 32, No. 2, (2006)

[13] Meng, X., et al.: OrientX: A Schema-based Native
XML Database System. Proceedings of the VLDB,
(2003), 1057–1060

[14] Fiebig, T., Helmer, S., Kanne, C.-C., Moerkotte, G.,
Neumann, J., Schiele, R., Westmann, T.: Anatomy of
a native XML base management system. The VLDB
Journal, Vol. 11, No. 4, (2002)

[15] Jorge F. Garza, Won Kim: Transaction management
in an object-oriented database system. Proceedings of
the ACM SIGMOD international conference on Man-
agement of data (1988)

6

