
Blognoon: Exploring a Topic in the Blogosphere

Maria Grineva∗
ETH Zürich, Switzerland

grinevam@inf.ethz.ch

Maxim Grinev∗
ETH Zürich, Switzerland
grinevm@inf.ethz.ch

Dmitry Lizorkin∗
Google

lizorkin@google.com
Alexander Boldakov∗

Semantic Dimension
boldakov@

semanticdimension.com

Denis Turdakov
ISP RAS

turdakov@ispras.ru

Andrey Sysoev,
Alexander Kiyko

ISP RAS
{syssoev,kiyko}@ispras.ru

ABSTRACT
We demonstrate Blognoon, a semantic blog search engine
with the focus on topic exploration and navigation. Blog-
noon provides concept search instead of traditional keywords
search and improves ranking by identifying main topics of
posts. It enhances navigation over the Blogosphere with
faceted interfaces and recommendations.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Design, Algorithms

1. INTRODUCTION
Today, the functionality offered by blog search engines is

similar to web search. Most blog search engines provide con-
ventional keywords-based search with minor extensions. For
example, Google provides keywords-based search for blogs
that differs from the web search in the frequency of index
updates and ability to rank results by recency. Technorati,
probably, the best known blog search engine, in addition to
keyword search, allows users to search by tags which blog-
gers attach to their posts. Also, it computes ”authority”
score for each blog based on the number of blogs linking to
a given blog, and it allows readers to browse popular posts
both by their recency and by the amount of ”attention” they
received on mainstream media sites.

Keywords-based search, even augmented with the features
described above, is good when the user knows exactly what
to search for. However, it gives poor help when the user’s
goal is to learn about, explore, or understand a broad topic.
Being a rich collection of people’s opinions, discussions and
reviews, the Blogosphere often appears to be a better place
for topic exploration than the whole Web [5]. Paradoxically,
topic exploration facility is a weak part of the existing blog
search engines.

∗This work was carried out while the authors worked at the
Institute for System Programming of RAS.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0637-9/11/03.

We have developed Blognoon, a semantic blog search en-
gine with the focus on topic exploration and navigation.
Blognoon tackles the problem by providing concept search
instead of keywords search and improves ranking by identi-
fying main topics of posts. It enhances navigation over the
Blogosphere with faceted interfaces and recommendations.

The technology behind Blognoon leverages Wikipedia as
the world biggest resource of human knowledge. There is a
large body of work on using Wikipedia to enhance text pro-
cessing [3]. Blognoon constitutes a unique combination of
Wikipedia-based techniques to identify main topics of posts
while indexing, build faceted navigation interfaces and rec-
ommend relevant posts. In Section 4 we describe these tech-
niques in detail.

2. SURFING THE BLOGOSPHERE WITH
BLOGNOON

We will demonstrate the following features of Blognoon.1

Search by concept. Blognoon provides search by con-
cepts instead of traditional keywords search. Suppose, the
user wants to explore the Clean Tech topic. The result of
the query is a ranked list of posts that contain Clean tech
concept and also relevant concepts such as Renewable energy
and Biofuel. Clean tech is the central and well-covered topic
in top-ranked posts, while lower ranked posts may cover rel-
evant topics. When typing the query in a query form, the
user gets suggestions which are the concepts described in
Wikipedia. Query suggestions are sorted by their popular-
ity in Wikipedia instead of alphabetical order, which would
turn out in a useless list of many little known concepts and
synonyms.

Concepts tips. When searching using conventional web
search engines, it is often hard to understand by reading the
title and the snippet of the result item, why this item is
relevant to the search query and what is it about. To help
with this, we generate query-relevant concepts tips for each
post that appears in the result. In Figure 1, for example, the
top-ranked post is accompanied with concepts tips such as
Renewable energy and Global warming. Every concept tip is
provided with a pop-up window where the user can read its
Wikipedia description.

Faceted navigation interface. The result of a query
can contain thousands of posts. To help the user to look
over the result, Blognoon provides facets on the right pane.

1Blognoon is the property of ISP RAS and is available on
the Web at http://blognoon.com

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

213

Figure 1: Blognoon concept search, with concept tips under each result item and facets on the right

You can think of the facets as a map that shows the user
where he is in the field and highlights the terrain. Facets
can be used to narrow the current search or to start a new
search. So, the user can decide which particular section to
explore more closely, at arbitrary levels of specificity. For
example, for “Clean tech” query, Blognoon provides named
groups of facets such as Solar Energy, Enterpreneurship and
Climate Change. In facets, the user can find a lot of useful
details about the explored topic, such as people’s names,
companies or brands.

What this blog is about. When the user becomes in-
terested in a particular blog and wants to read more about
it, Blognoon provides an overview for each blog in a form of
structured tag cloud.

Navigation via recommendations. When the user
opens up a post or a blog overview, the systems provides rec-
ommendations of other relevant blogs or posts on the right
pane. Each recommended blog or post is accompanied with
keywords which explain its content and why it is relevant.

3. OUR MODEL
Concepts. The basic element of our model is a concept.

A concept in our approach is associated with a Wikipedia
article, since each Wikipedia article is typically dedicated
to describe a single concept of the real world. Concepts are
denoted by lower-case letters, e.g. c1, c2.

Semantic Relatedness. The primary operation for com-
paring concepts is their pair-wise semantic relatedness met-
ric. Semantic relatedness is specified via a neighbourhood for
a Wikipedia article, which is considered as a set of all arti-
cles hyperlinked with that one (in either direction of a link).

Relatedness for a pair of concepts is then computed as an ex-
tended Dice coefficient over neighbourhoods of their respec-
tive articles, with weight boost given to certain Wikipedia
link types [9]. This link-based metric is computationally
inexpensive and effectively captures human intuition on se-
mantic relatedness of concepts [9]. The relatedness metric
is denoted as a function: sim(c1, c2)⇒ s, 0 ≤ s ≤ 1.

For a primary data abstraction, we use a map – a set of
pairs, denoted as M = {c1 . v1, . . . , cn . vn}, where the first
component of each pair denotes a key and the second com-
ponent – an associated value. Accessing a value for a given
key is denoted as M [ci], and the set of all keys is obtained
as M.keys⇒ {c1, . . . , cn}. Conventional set operations like
union have their usual meaning for a map. A particular
case of a map that has concepts for keys and non-negative
weights for values is refered to below as weighted concepts.

Semantic relatedness measure allows obtaining all con-
cepts related to a given concept together with their simi-
larity scores, denoted as a function as:

getSimilar(ci)⇒ {cj . sim(ci, cj) | sim(ci, cj) > 0}

Wikipedia as a knowledge base. We use several other
operations over concepts, all of which rely on solely the link
structure of Wikipedia:

We call a semantic graph induced by a set of concepts
C = {c1, . . . , cn} a graph G(C,E) which has these concepts
for vertices and has weighted edges between semantically re-
lated concepts: E = {(ci, cj , sim(ci, cj)) | sim(ci, cj) > 0},
where the third component in each triple is weight annotat-
ing the edge. We assume below that a semantic graph for C
is constructed by a function SemanticGraph(C)⇒ G.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

214

For a semantic graph G we use the Girvan-Newman al-
gorithm [2] for detecting communities there, which in our
case are clusters of concepts that are more semantically
similar to each other within a single cluster than across
different clusters. Formally, we assume having a function
GirvanNewman(G) ⇒ {V1, . . . , Vm}, such that Vj ⊂ C,
∪m

j=1Vj = C, Vi ∩ Vj = ∅ for i 6= j.
Finally, we make use of the Wikipedia category structure

for concepts generalization. For a set of concepts C, we infer
a concept c′ being a semantic generalization for all members
of C. We use the Spreading Activation algorithm [8] for this
task, refered to below as SpreadingActivation(C)⇒ c′.

4. OUR TECHNIQUES
Our system consists of four components: (i) Wikipedia

knowledge base, (ii) blog database, (iii) an offline module
that crawls blogs and indexes them into the database, (iv) a
web application that serves user requests.

Wikipedia knowledge base (WKB below) contains all data
from Wikipedia required for our techniques: concept names,
link structure and statistical information. For achieving the
best computational efficiency, data is stored in main mem-
ory, with a dedicated machine with 8Gb RAM used for host-
ing the WKB. The API of the WKB in particular includes
the functions introduced in the previous section, and the
other modules access the WKB via remote method invoca-
tion.

The offline module periodically crawls a set of top blogs.
For each new blog post collected, all concepts mentioned
in the post are retrieved as described in [9]. From those,
key concepts are selected that effectively illustrate the main
subject of the post using our technique described in [4]. The
processed post and its concept information are indexed and
stored in the blog database on a separate machine. The on-
line web application queries the database for answering user
requests.

The following subsections describe our techniques involved
in the processing pipeline in more detail.

4.1 Indexing and Search
We use Apache Lucene2 for indexing blogs and posts and

we have customized its indexing framework to support con-
cept search. Seamless integration of concept search with
conventional full-text search is provided, by working out spe-
cial matching rules.

For each processed blog post, all its words are indexed in
conventional manner. Additionally, all concepts are located
in the post as described in [9]. With N being the total num-
ber of concepts in the post and Ni the number of occurrences
for a concept ci, a concept ci is associated with an indexing
weight equal to:

weighti =
Ni

N
· textRank(ci) ,

textRank(ci) = (1− d) + d
X
cj

sim(ci, cj)P
ck

sim(ci, ck)
textRank(cj)

Here, textRank(ci) is the TextRank score [6] for ci, com-
puted over the semantic graph induced by all concepts in
the blog post. Using TextRank achieves the effect of re-
distributing weights towards concepts that play semantically

2http://lucene.apache.org/

central role in a blog post. We employ an undirected special-
ization of TextRank, which agrees with finding by Mihalcea
and Tarau who discovered that an undirect relation between
graph nodes produces better results for natural language
tasks [6]. Normalization by N eliminates potential bias to-
wards longer blog posts, thus taking into account a relative
frequency of a concept within a post.

Search functionality provided by Blognoon allows a query
to contain both concepts {ci} and conventional words {wj}.
To assist the user in specifying desired meaning for ambigu-
ous terms, as well as to speed up typing, a query suggest
facility is provided. To incorporate semantic relations be-
tween concepts, the query is expanded with concepts similar
to the specified ones:

Query = {c1, . . . , cn, w1, . . . , wm}

ExpandedQuery =

n[
i=1

getSimilar(ci)
[
{w1, . . . , wm}

Such an expansion allows finding not only blog posts with
the concepts directly queried, but also with semantically re-
lated ones, with match being weaker for less similar con-
cepts. The ExpandedQuery is sent to Lucene, and concept
matches are given score boost over word matches, thus pri-
oritizing semantic match over merely textual match. Note
that if a query contains no concepts, search functionality
seamlessly falls back to conventional full-text one. Thus
Blognoon provides concept search as a transparent exten-
sion over full-text search.

4.2 Facets
In conjunction with a search result, the user is presented

with facets – concepts that are key ones for the whole con-
tent of the search result. Facets provide two features to the
user: a semantical excerpt for the result as a whole and a
suggestion for subsequent searches for narrowing the result
space.

Facets are computationally expensive to be constructed
from scratch on the fly, so we pre-build them incrementally
while indexing blog posts. A map from a potential search
concept to its weighted facets is memoized as FacetCache;
Algorithm 1 illustrates how FacetCache is incrementally con-
structed as a new blogPost arrives for indexing. A call to
KeyConcepts denotes obtaining weighted key concepts of the
blogPost. FacetCache gets expanded with relations between
the key concepts; a local variable Related associates each
key concept with its similarity to ci.

Algorithm 1 IncrementallyBuildFacets

Input: blogPost, FacetCache
Output: FacetCache
1: KW = KeyConcepts(blogPost)
2: for ci ∈ KW.keys do
3: Related = {cj . sim(ci, cj) | cj ∈ KW.keys}
4: if ci ∈ FacetCache.keys then
5: FacetCache[ci] = FacetCache[ci]

S
Related

6: else
7: FacetCache = FacetCache

S
{ci . Related}

With frequencies of key concepts generally following the
power law, the size of FacetCache grows quickly only initially
and stabilizes as more blog posts get indexed. We observed
that for blogs in English the size of FacetCache does not

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

215

exceed 250K keys, allowing us to store FacetCache in main
memory for faster retrievals.

Concept Tips. To illustrate the particular relevance of
a blog post to a search query, each result item is accompa-
nied by concept tips – a subset of its key concepts that are
semantically related to concepts in the query. Concept tips
are essentially an intersection between facets and keywords:[
ci∈Query

FacetCache[ci].keys
\

KeyConcepts(post).keys

Facet Views. Two kinds of presentational views are sup-
ported for facets: a list view and a clustered view. In list
view, facets are displayed in a flat list, ranked by their rele-
vance to a search query. In clustered view facets are grouped
into named topical clusters according to their pair-wise se-
mantic similarity. Clustered view is especially illustrative
for a large set of facets. This allows the user to quickly ob-
serve general categories related to a search query and then
go for finer-grained facets of a certain category.

Clustered view is shown in Figure 1 on the right pane. In-
ternally, the view is represented as a map from a general con-
cept that names a topical cluster to weighted facets that con-
stitute the cluster. Algorithm 2 illustrates the computation
of the clustered view, accepting as input weighted facets for
a search query: ClusteredView(∪ci∈QueryFacetCache[ci]).

Topical clusters are computed from a semantic graph in-
duced by facets using the Girvan-Newman algorithm [2]. For
each cluster that is semantically dense enough to exceed a
certain threshold λ, a general concept is inferred for nam-
ing the cluster using the Spreading Activation algorithm [8].
The remaining clusters are merged under an administrative
concept “Misc”. The threshold λ is chosen experimentally to
balance between making clusters that exceed it contain rea-
sonably related facets and keeping the “Misc” cluster mod-
erate in size.

Algorithm 2 ClusteredView

Input: WeightedConcepts
Output: View
1: View = ∅
2: graph = SemanticGraph(WeightedConcepts.keys)
3: ClustersSet = GirvanNewman(graph)
4: for cluster ∈ ClustersSet do
5: density = 1

|cluster|2
P

ci,cj∈cluster sim(ci, cj)

6: if (density > λ) then
7: View[SpreadingActivation(cluster)] = cluster
8: else
9: View[“Misc”] = View[“Misc”]

S
cluster

What a Blog is About. To give the user an illustrative
impression on a subject of a blog at a glance, we display its
primary topics inferred from its content and key concepts
for each topic. This data is computed with the same Algo-
rithm 2, only invoked for weighted key concepts of the blog.
Unlike conventional tag clouds, the clustered view is more
structured and involves background knowledge on seman-
tics.

4.3 Recommendation
Blognoon offers recommendations with respect to both

individual blog posts and whole blogs, internally computed
via concept search. When the user opens a blog post, a

search query is constructed from key concepts of the post
and search results are presented as relevant recommenda-
tions. In the same way, recommendations for blogs are
performed using key concepts of a currently opened blog.
Recommendations offered by Blognoon constitute a valuable
tool for topic exploration, for they are based on non-trivial
semantic relations between concepts and allow the user dis-
cover relevant material which is difficult to locate otherwise.

5. RELATED WORK
Kosmix [7] aims at providing topic exploration function-

ality in scope of the whole Web, by combining deep web
crawl and federated search. Alternatively, Blognoon ad-
dresses only blog data, which makes the crawling approach
sufficient in our case and allows us to employ sophisticated
preprocessing of crawled data for providing concept search
which includes finding information that is semantically sim-
ilar to a query, not only textually similar. For semantically
ambiguous words in data sources, Kosmix achieves their
sense disambiguation implicitly, by either relying on par-
ticular data sources or by adding a particular meaning to
a query as another word. Blognoon performs explicit word
sense disambiguation for all words in data [9] as a prepro-
cessing step.

Generation of a topic page for a query is investigated in [1],
primarily for the biographical domain. Their approach to
detecting multiple aspect of a topic based on term cluster-
ing is somewhat reminiscent to clustered view of key con-
cepts in Blognoon. We however do not aim at generating a
single page that would cover a whole topic, but instead of-
fer semantic-driven navigational features to facilitate topic
exploration.

6. REFERENCES
[1] N. Balasubramanian and S. Cucerzan. Topic pages: An

alternative to the ten blue links. In Proc. IEEE Int. Conf.
on Semantic Computing, 2010.

[2] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very large networks. Phys. Rev. E,
70(6):066111, Dec 2004.

[3] E. Gabrilovich and S. Markovitch. Wikipedia-based semantic
interpretation for natural language processing. J. Artif. Int.
Res., 34:443–498, March 2009.

[4] M. Grineva, M. Grinev, and D. Lizorkin. Extracting key
terms from noisy and multitheme documents. In WWW ’09:
Proceedings of the 18th international conference on World
wide web, pages 661–670, New York, NY, USA, 2009. ACM.

[5] M. A. Hearst, M. Hurst, and S. T. Dumais. What should
blog search look like? In SSM ’08: Proceeding of the 2008
ACM workshop on Search in social media, pages 95–98, New
York, NY, USA, 2008. ACM.

[6] R. Mihalcea and P. Tarau. TextRank: Bringing order into
texts. In Proceedings of EMNLP-04 and the 2004
Conference on Empirical Methods in Natural Language
Processing, July 2004.

[7] A. Rajaraman. Kosmix: high-performance topic exploration
using the deep web. Proc. VLDB Endow., 2(2):1524–1529,
2009.

[8] Z. Syed, T. Finin, and A. Joshi. Wikipedia as an ontology
for describing documents. In Proceedings of the Second
International Conference on Weblogs and Social Media.
AAAI Press, March 2008.

[9] D. Turdakov and P. Velikhov. Semantic relatedness metric
for Wikipedia concepts based on link analysis and its
application to word sense disambiguation. In SYRCoDIS,
2008.

WWW 2011 – Demo March 28–April 1, 2011, Hyderabad, India

216

