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Abstract—Community structure is one of the most important
and characteristic features of social networks. Numerous methods
for discovering implicit user communities from a social graph of
users have been proposed in recent years. However, most of them
have performance and scalability issues which make them hardly
applicable to population-wide analysis of modern social networks
(billions of users and growing). In this paper we present EgoLP
– an efficient and fully distributed method for social community
detection. The method is based on propagating community
labels through the network with the help of friendship groups
of individual users. Experimental evaluation of Apache Spark
implementation of the method showed that it outperforms some
state-of-the-art methods in terms of a) similarity of extracted
communities to the reference ones from synthetic networks;
b) precision of user attributes prediction in Facebook based
solely on community memberships; c) likelihood of the discovered
community structure according to the proposed generative model.
At the same time, the method retains near-linear complexity in
the number of edges and is thus applicable to social graphs of
up to 10

9 users.

Keywords—Community detection, social networks, graph clus-
tering, distributed algorithms.

I. INTRODUCTION

Online social networks are known to inherit the natural
community structure of their populations [9]. Users of social
services tend to unite either explicitly (by means of grouping
functionality of network software) or implicitly (by establish-
ing ties based on shared affiliation, role, activity, social circle,
interest, function, or some other property).

According to the common identity and common bond
theory [3], people join groups based on identity (i.e., inter-
est in the topics discussed) or bond attachment (i.e., social
relationships). However, it is very time-consuming for a user
to support a lot of consistent groups and categories explic-
itly. Further, for many people it could be uncomfortable to
explicitly declare memberships in some groups (politics/reli-
gion/sexuality/games) because of peer pressure. Finally, certain
kinds of groups (geographical/educational/job) are based on
attribute similarity and could not be fully recovered due to
incompleteness of user profiles.

At the same time, uncovering implicit community struc-
ture of a social network (learning the list of communities
for any given user) would provide an additional input for
many analytic applications and services. For example, great
challenges rise in tasks like user-item recommendation, social
matchmaking, textual content categorisation and filtering. Re-
cent research [23], [22] shows that recommendation systems

could benefit from involving multiple types of linked objects.
Besides user-item relations, the system should also account
for user-community, item-category or item-author connections.
The reason is sparse structure of the observed user-item matrix
which causes overfitting. So, additional types of relations,
including communities structure, play regularization role in
such tasks.

It was shown that user communities in online social net-
works are overlapping: e.g., in LiveJournal a user participates
in ∼ 3 communities in average [7]. Besides, even in networks
with small number of communities per user the distribution of
user-community memberships appears to be power-law [19].
Hence, there always exist users with many communities
which makes them highly overlapping. However, most of the
proposed overlapping community detection methods [1], [2]
suffer from high computational complexity and poor scalability
which makes them practically inapplicable when the input data
scales beyond 10-100 million users1.

We present EgoLP – an efficient and fully distributed
method for extracting implicit communities of social network
users given inter-user connectivity data. The method first
picks each user and identifies her egomunities [11]. The latter
are cohesive subgroups within ego-network – the network of
the user’s closest neighbours (e.g., friends or followers). All
users are then initialized with community labels and start
to iteratively exchange labels based on predefined interac-
tion rules (strategies). During the iterations, egomunities are
utilized to aggregate labels propagating to each user from
its contacts. Finally, communities are post-processed so that
poorly connected communities are split into smaller ones.

The main advantages of the proposed method could be
summarized as follows:

• a novel approach to employing egomunities for detecting
global communities: egomunities help to aggregate and
filter messages propagating between the nodes; as a
result, the most popular community IDs (labels) within
an egomunity get higher chances to be propagated;

• a method for distributed egomunities retrieval from large
graphs;

• a method for identifying weakly connected communities
and splitting them into denser sub-communities;

• accuracy improvement over some other popular methods
for detecting highly overlapping community structure;

1For instance, Facebook reports 1.32 billion monthly active users, Twitter
reports 271 million monthly active users, etc.



• efficient distributed implementation based on Apache
Spark2 using Pregel computational model [4];

• low computational complexity: O(m/w), where m –
number of graph edges, w – computation cluster size;

• near-linear scalability which allows processing graphs of
up to 109 nodes in reasonable time.

Other contributions of the presented paper include:

• description of the discovered issues of label propagation
methods for community detection;

• a novel method for assessing community structure based
on a generative model which combines some important
properties of social community structure.

The rest of the paper is organized as follows. Section
2 contains related work description. The problem of social
community detection is defined in section 3. In section 4, we
describe the proposed method step by step. Evaluation results
are described and discussed in section 5. Section 6 contains
performance evaluation results. We conclude in section 7 with
possible future directions.

II. RELATED WORK

Below we describe various community detection methods
which resemble our method in different aspects.

A. Overlapping community detection

Observing a variety of network community detection meth-
ods, one could pick four main classes of algorithms which
provide a good accuracy in revealing highly overlapped com-
munity structure. These classes are model-based methods [13],
[7], local optimization methods [14], [16], and label propaga-
tion methods. However, for the first two classes there appear
numerous problems when it comes to scalable time-efficient
implementation.

The label propagation (LP) provides a perfect combination
of properties: high accuracy in both disjoint and overlapping
community detection, low computational complexity, ease of
implementation in terms of modern computational paradigms
for distributed graph processing (Pregel [4], GraphX [28]), and
good scalability.

A common and distinctive characteristic of methods in
this family is the process of exchanging community labels
between graph nodes which accumulate income labels and
send messages to neighbour nodes to inform about updated
labels collection. Most of the popular LP-based methods
(including LPA [29], SLPA [5], BMLPA [6], and COPRA [30])
conform to this template and only differ in label initialization
and exchanging strategies.

In order to understand the reasons of accuracy decrease in
the case of highly overlapping communities [1], we’ve imple-
mented and evaluated LP(k) – a label propagation algorithm
with the simplest strategies of labels exchanging:

• Sender strategy: draw k labels;
• Receiver strategy: store the most frequent k labels.

Note that LP(k) is equivalent to the popular SLPA [5]
algorithm if k = 1.

The evaluation was made by applying LP(k) to LFR
benchmark networks [20] with ground-truth communities and

2http://spark.apache.org/

comparing the detected communities against them. The fol-
lowing issues of LP(k) were found and targeted during EgoLP
development:

a) Hubs effect: if there are nodes with degree much higher
than average degree (>3 times), their labels lead to extra huge
communities comparing to reference communities set;

b) The lack of communities at intermediate stages: for a
fixed node one of the communities becomes dominating and
displace the others. Besides, usually a node has more then one
community;

c) Label propagation process could result in poorly con-
nected or even disconnected communities;

d) A vertex adds too many “noise” elements to labels
array. Label propagation procedure initialized by reference
communities leads to continuous accuracy decrease.

Our experiments indicate that EgoLP helps to reduce
the mentioned drawbacks and thus improves accuracy over
LP(k), especially for highly overlapping communities. At the
same time, we avoid costly computations (like rough cores
enumeration in BMLPA), so the resulting complexity remains
near-linear (Section IV-E).

B. Egomunity-based methods

Soundarajan et al. [25] introduced Node Perception - an
algorithm template for merging egomunities into larger global
communities. They first detect egomunities within the ego-
network of each user, then build a new meta-network of
the found egomunities. Finally, the meta-network is clustered
in order to obtain the resulting communities. The DEMON
algorithm by Coscia et al. [17] could be viewed as a specific
instance of this template. There is, however, an important
difference: egomunities are extracted not from an ego-network
of each user, but from a so called EgoMinusEgo network
(ego-network without an ego node and all its edges). This
modification helps to avoid “noise” caused by the presence of
a single node connected with the rest of ego-network members.
The EgoClustering algorithm by Rees et al. [26] is also quite
similar except for egomunities are found merely as disjoint
components of an ego-network after removing ego with all
edges. The later work of Rees et al. [27] provides another
way to aggregate an individual’s view of her social groups to
produce communities.

Unlike the previous approaches, our method employs ego-
munities as a means to aggregate and filter messages propagat-
ing between the nodes. Instead of interacting with each of the
neighbours, a node mostly communicates with its egomunities
which in a sense shape the messages flow. As a result, the
most popular community IDs (labels) within an egomunity get
higher chances to be propagated.

C. Scalable methods

Scalability has become an important and desirable feature
of community detection methods due to increasing populations
of social services. Known implementations include: LPA using
Hadoop MapReduce3, SLPA using MPI [31], the Louvian
method using Apache Giraph4, the propinquity dynamics
method using Hadoop MapReduce [32], Scalable Community
Detection [33] and many others.

To the best of our knowledge, this work is the first to report
an Apache Spark implementation of a community detection

3http://www.akshaybhat.com/LPMR/
4http://sotera.github.io/distributed-louvain-modularity/



method. Firstly, we make use of Bagel (Spark’s implementa-
tion of Pregel) for thrifty and efficient implementation of the
labels exchanging process. Secondly, we benefit from Resilient
Distributed Datasets (RDDs) - highly optimized data structures
perfectly tailored for iterative algorithms.

III. PROBLEM

From the practical point of view, community is a cluster of
social network users created on shared affiliation, role, activity,
social circle, interest or function (functional definition) [9].
However, there is no commonly accepted formal definition
of community. Surveys [2], [1] contain numerous definitions
which could be argued with counter-examples. In this paper
we treat community as a group of social network users and
assume that community structure in social graph has a number
of characteristic structural properties. We outline the most
intuitive and important of them below. Our method doesn’t
optimize any of them explicitly, however, experiments clearly
demonstrate that many of them are present in the output
communities.

Let’s consider a graph G = (V,E), |V | = n, |E| = m.
Communities set (cover) is defined as C = {Zc}

K
c=1, Zc ⊆ V

and |Zc| = nc. It is expected that a cover has many overlapping
elements. The number of entries of the j-th node into different
communities is called membership and denoted as mj ≥ 0.
Internal and external edge counts of the node j ∈ Zc are
denoted as mcj and kj − mcj respectively, where kj is j-th
node degree.

We target the following structural properties of community
structure in social graphs:

a) Separability captures the intuition that a good commu-
nity is well-separated from the rest of the network. It could
be treated as internal/external community edges ratio [9]. In
some cases, however, when a node belongs to many different
communities, the external edges count may exceed internal
edges count. In such situation one may characterize strong
(statistically significant) connection of node j and community
Zc by probability

pjc = P(µcj ≥ mcj),

where µcj is internal edges count in some random graph
model with remained node degrees or their expectations.
Lower pjc value means better connection.

b) Density means that probability of two nodes being
connected increases with the number of common communities
they belong to [7], [13]. The connection between i and j is
usually modelled using Aij – independent random variables:

Aij ∈ Bernoulli(1− E(λij)),

λij =
∑

c

(ziczjcλc + εg(zic, zjc, ki, kj , kijc)),

where zic indicates that i is in community Zc, kijc – common
friends count inside Zc, λc – model parameter associated with
internal community edge probability, ε – a small parameter, A
– graph adjacency matrix.

c) Cohesiveness characterizes the internal structure of the
community. It should be relatively hard to split a community
into sub-communities.

d) Cohesion: if an edge (i, j) is located inside community
Zc then most of the common neighbours of i and j also belong
to Zc [11];

e) Low-degree nodes tend to be part of very few commu-
nities, while high-degree nodes tend to be members of multiple
groups [9];

f) Number of edges in the community increases super-
linearly with the community size [9];

g) User membership has a power-law distribution [9];
h) Community size has a power-law distribution [20].

A. Property of egomunities

There is also another property of community structure
which we hypothesized and built our method upon: the ma-
jority of nodes inside an egomunity also share one or more
common global communities.

Unfortunately, we were unable to confirm this property
using real-world data. However, experiments with algorithmi-
cally discovered egomunities (Table I) provided some evidence
supporting our assumption. In the table, NMIavg corresponds
to the averaged NMI of user’s egomunities and parts of global
communities within user’s ego-network, Fravg means average
fraction of egomunity covered by any community (on condition
coverage is > 0.5 or 0), and P is probability of an egomunity
be entirely covered by any community. See section V for the
explanation of testing methodology.

TABLE I. EGOMUNITIES AND GLOBAL COMMUNITIES CORRELATION

IN LFR GRAPHS DEPENDING ON MEAN NODE MEMBERSHIP Om .

Om 2 3 4 5 6
NMIavg 0.78 0.50 0.57 0.32 0.41
Fravg 0.93 0.68 0.72 0.39 0.53

P 0.50 0.14 0.16 0.05 0.10

B. Community structure likelihood

One of the best ways to formalize community detection
task is to define a probabilistic graph model. Most of the noted
properties of community structure could be explained using the
model described below.

Using the abovementioned model for density measuring
and applying Poisson approximation we get the following
distribution for Aij :

Aij =
∑

c

Aijc ∈ Po

(

∑

c

(λ1c + λ2ckijc)

)

,

Aijc ∈ Po(λ1c + λ2ckijc), i, j ∈ c,

λ1c ∈ N

(

α1

nγ
c
, σ2

)

, λ2c ∈ N

(

α2

nγ
c
, σ2

)

,

where P(Aijc = 1) measures edge (i, j) probability inside
community c, kijc – common friends count of i and j inside
community c normalised by average degrees of i and j, Po –
Poisson distribution, N – normal distribution, A – adjacency
matrix (binary or weighted), nc – nodes count inside c.
This model assumes existence of an ε-community including
all graph nodes to account for edges between communities.
Described edges model is quite similar to MOSES model [13]
and could be referred to as a block model.

Since the distribution parameter λ1c+λ2ckijc (related to the
edge probability) depends on common friends count, the model
also accounts for the cohesion property. Superlinear growth of
internal community edges depending on its size is expressed



in distributions of λ1c, λ2c. The regularized likelihood for the
whole model could be defined as follows:

LG(C, α1, α2, σ, γ, β1, β2) =

= p(Z)
∏

i<j

p(Aij)
∏

c∈C

p(λ1c)p(λ2c)p(nc)
∏

v∈V

p(mv),

p(Z) = |C|!
∏

c∈C

(nc

n

)nc
(

1−
nc

n

)n−nc

,

where Z – user-community membership matrix (the apriori
knowledge), mv – number of communities node v belongs to ∈
power-law distribution with β1 parameter, nc – community size
∈ power-law distribution with β2 parameter, that corresponds
to the properties of nc and mv from Section III. The equation
for P (Z) comes from a previously proposed model [19] where
nodes and communities are connected using a bigraph and
(c, v) connection probability is proportional to ncmv .

The proposed model could be used for both detecting un-
known community structure and evaluating known community
structure. The goal of a community detection system is to
find configuration (C, α1, α2, σ, γ, β1, β2) that maximises LG.
At the same time, the goal of a quality measurement system
is to find configuration (α1, α2, σ, γ, β1, β2) that maximises
LG given C. High likelihood values thus correspond to sets
of communities that have a combination of the described
properties. We employ the proposed model to estimate the
likelihood values of different covers to understand how well
these properties are expressed in the communities found by
the algorithms.

Involving egomunities property (Section III-A) allows to
define an addition to initial likelihood function:

Lego(C, λ3) =
∏

v∈V

∏

e∈E(v)

∏

j∈e

p(j ∈ Ze),

where p(j ∈ Ze) ∈ Be(λ3) is probability that j-th node from
egomunity e is inside Ze community which best-covers e, E(v)
– egomunities set of the v-th node.

In case graph nodes have categorical attributes, the model
could be further extended with Latr addition:

Latr(C,W ) =
∏

v∈V

∏

a∈A(v)

(∑

c ZvcWca
∑

c Zvc

)

,

whereA(v) – attributes of user v, Wca – attribute weight inside
community c.

The overall likelihood for an attributed graph with com-
munities and egomunities is

L = (LG + Lego + Latr)/n.

IV. METHOD

EgoLP has four main stages: pre-processing, egomunities
retrieval, label propagation, communities post-processing. We
provide the algorithm description with some remarks on our
Apache Spark implementation for each of these stages. EgoLP
has a number of parameters which are listed in Table II
together with their optimal values according to the experiments
(see section V for details).

Our design choices are largely motivated by the results
of experimental evaluation of the simplest label propagation
algorithm (see section II-A for details). We tried to eliminate

the discovered drawbacks, improve the resulting accuracy, and
at the same time not to hurt scalability or increase total
computational complexity significantly.

TABLE II. OPTIMAL EGOLP PARAMETERS ACCORDING TO THE

EXPERIMENTS USING LFR BENCHMARKS WITH On = 0.5 AND

VARIOUS Om .

Om 3 6
Egomunities retrieval

# iterations 15 14
min egommunity size 5 3

min egomunities intersection for union 0.8 0.6
# labels sent/received 3 5

threshold 0.06 0.08
Label propagation

# iterations 19 25
threshold 0.1 0.06

max membership 20 10
# labels sent 10 5

# labels received 3 1
max combiner map size 40 20

Communities post-processing
# iterations 15 15

# labels sent/received 1 3
threshold 0.15 0.15

A. Pre-processing

A certain portion of top-degree nodes (hubs) are removed
from the graph at the very beginning. Hubs are attached to
communities at the end of the label propagation phase. This
heuristic simplifies big graphs processing (network load, CPU
balancing, egomunities finding complexity) and reduces “hubs
effect” (Section II-A).

B. Egomunities retrieval

Here we describe a distributed procedure which collects
ego-networks and executes the LP(k) algorithm (section II-A)
with the following parameters for egomunity detectuion: Te –
iterations count, r – threshold, minc – min egomunity size,
minu – min egomunities union relative size.

In Algorithm 1 graph nodes are processed in groups
[V0, . . . , VI−1]. Nodes from group Vi make three main actions.
Firstly, node v ∈ Vi sends list of friends to the neighbours
with degree d times higher than degree of v and to the neigh-
bours from Vi+1. Then it receives adjacent nodes intersection
(responses) from the high degree neighbours and complete
lists of friends from the other nodes. Finally, when all ego-
edges are collected in node v, it executes local community
detection algorithm, deletes egomunities with size < minc
and replaces the returned egomunities {Ci} by one egomunity
with all neighbours if

|
⋂

i Ci|

v.degree
< minu.

We assume that egomunities with size < minc don’t indicate
inclusion into community and small union of egomunities with
size > minc may mean that communities structure in the ego-
network wasn’t detected properly.

Egonet edges collection is parted into I steps to pre-
vent memory overflow, decrease Spark shuffling complexity
(depends superlinearly on Spark RDD partitions count) and
network load due to receiving common adjacent nodes from
group with the previous index. A simple theoretical estimation
shows that the lowest network load lI is achieved when
I ∈ [2, 4] : lI/l1 ∼ 0.75.



Importantly, the retrieved ego-munities of social network
users are valuable per se. In particular, they could be employed
in any application that relies on social circles in target user’s
contacts (e.g., as a replacement for manual friend grouping
tools in Facebook and Google+).

Data: Graph (V,E)
Parameters: I , Te, r, minc, minu, k, d
Result: Egomunities set {Eik}, Eik ⊂ Vi.friendList
[V0, . . . , VI−1] = split V by hash function (v % I);
V−2 = V−1 = VI = VI+1 = ∅;
for i = -2:I do

for v ∈ Vi+2 do
for u adj v if u.degree > d * v.degree do

send v.adjnodes to u;
end

end
for v ∈ Vi do

create egonet(seed = v);
findEgomunities(Te, r, minc, minu, k);
for u adj v if u ∈ Vi+1 do

send common (u, v).adjnodes to u;
end

end
for v ∈ V \ Vi do

for u adj v if u ∈ Vi+1 do
send v.adjnodes to u;

end
for income message from u do

send common (u, v).adjnodes to u;
end

end
end

findEgomunities(Te, r, minc, minu, k):
for i = 1:Te do

make LP(k) iteration;
each node send/add k labels;

end
for v ∈ egonet do

remove elements from v.labels with frequency < r;
end
remove egomunities with size ≤ minc;

if
|
⋂

i
Ci|

v.degree
< minu then

egomunities = array(all egonet nodes);
end

Algorithm 1: Egomunities retrieval.

C. Label propagation

Next, label propagation with specific node interaction
strategies is employed to uncover global community structure
in the input graph:

• Sender strategy: for each adjacent edge a sender node
draws ls elements from its labels collection and removes
duplicates. So, a node with larger community member-
ship sends more labels in average. Each label could be
optionally assigned a weight equal to the edge weight
multiplied by community size penalty (*).

• Receiver strategy: incoming labels are distributed between
egomunities according to sender indexes. The most fre-
quent lr labels per each egomunity are then appended to
labels map (label → weight) of the receiver node. The
map size is restricted by mx. If the network is weighted,

a label frequency is computed as weights sum of edges
associated with the label. Otherwise, all labels are treated
equivalently.

In directed networks Sender strategy uses only outgoing
edges and Receiver strategy uses only ingoing edges.

The proposed egomunity-based Receiver strategy delivers
the following advantages compared to other LP-based meth-
ods:

• received labels count is estimated more precisely (par-
tially solves lack of communities and noise labels prob-
lem);

• the most frequent labels are calculated independently in
different egomunities that allows to reveal communities
with different connection strength (partially solves dom-
inating community problem).

For distributed LP process Algorithm 2 is executed. Here
we also briefly describe some details of Spark workers5

communication.

Data: Graph (V,E), egomunities
Parameters: T , ls, lx, lr, mx, T2, r
Result: Communities set {Ci}, Ci ⊂ V
for i = 1:T do

for v ∈ V do
for u adj v do

assign weights to labels (eq. *);
draw and send ls labels to u;

end
end
for w ∈Workers do

for vw ∈ w do
push labels into map (label → weight);
trim map to size lx;

end
end
for v ∈ V do

for w ∈Workers do
unite combined maps (label → weight);

end
v.labels += receiverStrategy(unitedMap, lr);
trim v.labels map to size mx;

end
end
add hubs to V ;
for i = 1:T2 do

send/receive iteration without egomunities (single
egomunity is neighbours set);

end
for v ∈ V do

v.labels.group.filter{(l, freq) ⇒ freq > r};
end

Algorithm 2: Label propagation.

Since community size distribution is power-law, labels cor-
responding to larger communities should have lower priority.
For this purpose label weights are multiplied by penalty factor

αkmax(k, nc)
−α−1, (*)

where nc is community size, parameter k has optimal value in
range [30, 40], parameter α is optimal in range [−0.1, 0.1].

5Worker is a Java process responsible for computation on a node of Spark
cluster.



Data: Graph (V,E), communities set {Ci}, Ci ⊂ V
Parameters: cx, λx, k, T , r, minc
Result: Communities set {Si}, ∀i ∃j : Si ⊂ Cj

Remove communities with size > cx;
for Ci ∈ C do

if 2-nd min|eigenvalue (L)| < λx then
find subcommunities by LP(k) (T , r, minc);
find connected components in subcommunities;
remove Ci;

end
end

Algorithm 3: Local communities post-processing.

D. Communities post-processing

Most of LP-methods don’t ensure connectedness and co-
hesiveness of communities (Section II-A). We apply post-
processing procedure to infer possible sub-communities in
each community obtained at label propagation step. We exploit
the known properties of Laplacian matrix for checking whether
a community is a candidate for splitting:

L = A− diag(~d),

where A – adjacency matrix, ~d – node degrees.

The second smallest eigenvalue of L allows to estimate
how well a community is connected internally: zero means
presence of disjoint components while low values (< λx)
indicate poor connectivity [34]. EgoLP tries to improve the
results by applying LP(k) to such suspicious communities. The
whole procedure is presented in Algorithm 3.

Note that the smallest eigenvalues could be obtained ap-
proximately by iteratively solving linear equation in O(mc)
time, where mc is edges count in the c-th community.

After local community sub-partitioning one may remove
or keep the initial community or some sub-communities inter-
sected with other global communities. For this optional stage
one may use community structure likelihood (Section III-B)
as a removing criterion.

E. Complexity

Here we provide algorithm complexity estimation of
EgoLP composed of external memory and network operations.
Summarizing all EgoLP components we obtain:

O
(m

w

(

k2−β
max + T

)

+
m

nw
∗ cx ∗K

)

.

Main characteristic variables used are n – graph nodes count,
m – graph edges count, ki – degree of node j, 1 < β < 2 –
a parameter of power-law distribution of node degrees, K –
number of communities selected for splitting, cx – maximum
community size, T – number of label propagation iterations,
p – Spark RDD partitions count, w – Spark workers count.

The last component is relatively small, T ∈ [10, 20],
k2−β
max ∈ [20, 50] due to hubs removing. Hence, the overall

complexity of EgoLP could be approximated with O(m/w).

F. Distributed implementation

The core part of EgoLP implementation is based on Pregel
computation paradigm [4]. Many optimization algorithms us-
ing Pregel message passing interface suffer from synchronous

labels or node state updates: a node after collecting information
about neighbour nodes states could make wrong decision
without taking into account neighbours strategies of states
updating. One way to overcome this problem is to use damping
factor λ for messages or states. Each state (message) is set to
λ times its value from the previous iteration plus 1 - λ times
its updated value. In EgoLP we add new labels to node labels
array formed at previous iteration. So, nodes don’t change their
states significantly after a single iteration.

Another remark related to distributed Pregel algorithms is
messages combining. If the Receiver strategy is an aggregate
function, then the messages can be partially processed at
each sender worker and final result will be reduced at target
worker. This reduces network load and makes computation
more balanced.

As for Spark environment configuration, the following
variables are important:

• Parallelism: since distributed array is computed in parti-
tions, their count should be set high to prevent memory
lack. On the other hand, higher partitions count increases
shuffling time superlinearly;

• Serializer buffer size should be set optimally: high value
leads to less free memory and more work for garbage
collector;

• Worker timeout and open files count should be set exces-
sively high.

V. EXPERIMENTS

We provide and discuss accuracy evaluation results of
EgoLP with synthetic and real graphs using different measures.
Further, we compare with other popular community detection
methods.

A. Ground-truth communities

Conventionally to measure accuracy of any community
detection method one makes use of graphs with reference
cover (ground-truth communities). An algorithm returns a set
of communities, whereupon its similarity with the reference
partition is calculated. To estimate the affinity of two covers
(X , Y ), NMI measure is typically applied [20]:

NMI(X,Y ) = 1−
1

2
[H(X|Y )norm +H(Y |X)norm]

For each community variable Xk we are looking for the closest
Yk in sense of information lack H(Xk|Yj)→ minj , where Xk

is random variable corresponding to the occurrence probability
of a vertex in community k, H(Xk|Yj) is conditional enthropy
of Xk given Yj . Hnorm is calculated as normalization of
H(Xk|Yk) on the amount of all information about Xk and
averaging over all communities in X .

NMI range is [0; 1], minimum value means totally different
covers, maximum value means equal covers.

B. Synthetic networks

We compare EgoLP method with GCE, OSLOM, SLPA
and MOSES which have the highest NMI values in most of
the cases according to paper [2]. Figure 1 gives the summary
of results for LFR [20] and CKB [19] benchmark networks.

Although OSLOM and MOSES produce rather good re-
sults they can’t process large graphs (> 1M nodes), because
processing neighbours area of each community and pairwise
communities comparison requires a lot of time.



Fig. 1. Accuracy evaluation of EgoLP and other methods using synthetic graphs. Left: LFR benchmark with On = 0.5N . Center: LFR benchmark with
On = 0.8N . Right: CKB benchmark with different values of β1 parameter (relates to community membership power-law distribution).
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Fig. 2. Performance evaluation of EgoLP using synthetic graphs. Left and center: EgoLP speed (1/time) depending on Spark workers count: ’ego’ – egomunities
retrieval, ’lp’ – label propagation, ’sum’ – total speed, ’[ego|lp|sum]_p’ – fixed number (50) of partitions per worker. Right: EgoLP running time depending on
graph size: ’ego’ – egomunities retrieval, ’lp’ – label propagation, ’post’ – communities post-processing, ’sum’ – total time.
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C. Community structure likelihood

If a reference set of communities is not available, it is
also possible to estimate quality of found communities with a
likelihood function of a graph probabilistic model introduced
in Section III-B.

For experiment with real social graphs we took Face-
book100 – a collection of networks of one hundred American
colleges and universities [21]. All the networks are undirected,
binary and attributed (student/faculty status flag, gender, major,
second major/minor, dorm/house, year, high school). Likeli-
hood measurements on Facebook100 graphs (see Table III)
characterize the score of EgoLP as close to the best. The
highest average likelihood was demonstrated by the MOSES
algorithm which in turn has low quality on LFR graphs
and already mentioned problems with scalable implementation
(Section II-A).

D. Attributes prediction

We’ve also evaluated the found communities by their use-
fulness in attributes classification task [24]. Input data comes
from the Facebook100 dataset (section V-C). We’ve applied
different algorithms to find communities, employed commu-
nity labels as classification features for training and measured
quality of a classifier which predicts year of graduation and

TABLE III. LIKELIHOOD VALUES OF COMMUNITY STRUCTURES

EXTRACTED FROM FACEBOOK100 DATASET. THE BEST VALUES OF ARE

SHOWN IN BOLD, THE SECOND BEST VALUES ARE SHOWN IN ITALICS.

dataset EgoLP SLPA GCE OSLOM MOSES
Caltech -113 -120 -119 -116 -106
Cal65 -206 -207 -225 -217 -177
Lehigh -233 -233 -259 -257 -207

Princeton -273 -315 -311 -318 -248
UChicago -193 -211 -221 -214 -174
Wellesley -194 -207 -218 -209 -176

TABLE IV. PRECISION OF PREDICTING DORM AND GRADUATION

YEAR OF COLLEDGE STUDENTS FROM FACEBOOK100 DATASET. THE BEST

VALUES ARE SHOWN IN BOLD, THE SECOND BEST VALUES ARE SHOWN IN

ITALICS.

dataset/attribute EgoLP GCE OSLOM MOSES SLPA
UChicago/year 0.64 0.56 0.62 0.72 0.56
UChicago/dorm 0.57 0.54 0.55 0.66 0.41

Caltech/year 0.51 0.44 0.42 0.70 0.38
Caltech/dorm 0.79 0.85 0.83 0.78 0.70
Wellesley/year 0.71 0.75 0.75 0.86 0.75

Princeton/year 0.82 0.77 0.78 0.88 0.68
Lehigh/year 0.74 0.71 0.71 0.87 0.70
Cal65/year 0.71 0.60 0.63 0.70 0.68

average 0.69 0.65 0.66 0.77 0.61

dorm. In this application MOSES has the best score and EgoLP
is at the second position.



VI. PERFORMANCE

For performance evaluation, we generated a set of random
social-like graphs with 22, 50, 100, 217, 434 and 920 million
nodes and average degree of 100. The experiment was done
on a cluster with 18 workers, 100 cores total, 24 Gb RAM
and 4×1 Tb hard disks on each worker. During each run, 10
iterations of label propagation were performed. Figure 2 (right)
demonstrates the results.

For scalability measurements a graph with 25 million nodes
and 100 average degree was considered. Experiment was done
on cluster with 18, 15, 12, 9 and 6 workers (12 cores, 24
Gb RAM, 4×1 Tb hard disks on each worker). Figure 2
(left and center) illustrates results of the experiment for dif-
ferent stages of EgoLP. Average scalability plot coefficient
△speed/△workers is about 0.0012 for all stages line and
k-times (k = 2, 2.5, 3 in figure 2) workers increment brings
about k-times speed up. In some cases one have to keep a
fixed Spark partitions per worker (for example, if workers are
added synchronously as the graph size increases). Experiments
with this scenario demonstrate worse scalability compared to
setups with a fixed sum of partitions in all workers.

VII. CONCLUSION

We presented EgoLP – a linear time, fully distributed
method for extracting implicit communities of social network
users given inter-user connectivity data. It appears to be a
unique representative of the label propagation family capa-
ble to detect significantly overlapped communities. Resulting
covers found by our method satisfy most of the required prop-
erties of community structure. Comparison with state-of-the-
art algorithms shows relatively high accuracy in experiments
with synthetic graphs and real social networks. Scalability
experiment demonstrates an effective speed up with workers
incrementation.

Possible future directions include extending the method for
attributed networks and estimating hierarchy of communities.
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