
Towards an Exhaustive Set of Rewriting Rules
for XQuery Optimization: BizQuery Experience

Maxim Grinev1 and Sergey Kuznetsov2

1 Moscow State University, Vorob’evy Gory, Moscow 119992, Russia
grinev@acm.org,

WWW home page: http://www.ispras.ru/~grinev
2 Institute for System Programming of Russian Academy of Sciences,

B. Kommunisticheskaya, 25, Moscow 109004, Russia,
kuzloc@ispras.ru

Abstract. Today it is wildly recognized that optimization based on
rewriting leads to faster query execution. The role of a query rewrit-
ing grows significantly when a query defined in terms of some view is
processed. Using views is a good idea for building flexible virtual data
integration systems with declarative query support. At present time such
systems tend to be based on the XML data model and use XML as the in-
ternal data representation for processing query over heterogeneous data.
Hence an elaborated algorithm of query rewriting is of great importance
for efficient processing of XML declarative queries.

This paper describes the query rewriting techniques for the XQuery lan-
guage that is implemented as part of the BizQuery virtual data inte-
gration system. The goals of XQuery rewriting are stated. An algebra
for rewriting is proposed. Besides query rewriting rules for FLWR ex-
pressions the rules for XQuery functions and recursive XQuery functions
are presented. Also the role of the XML schema in query rewriting is
discussed.

1 Introduction

It is widely accepted doctrine that query languages should be declarative. As
a consequence of this there are frequently several alternative ways to formu-
late a query. It is noticed that different formulations of a query can provide
widely varying performance often differing by orders of magnitude. Relaying on
the reasoning, sophisticated techniques for query transformations for traditional
query languages such as SQL was worked up [16–20]. Using the techniques allows
rewriting a query into equivalent one that can be executed faster. The general
characteristics of query rewriting can be summarized as follows:

– The phase of rewriting optimization follows query parsing and precedes query
plan generation and optimization.

– Rewriting optimization transforms a query into equivalent one and certainly
doesn’t make queries worse in respect to their execution time.

– Query rewriting is usually carried out on the basis of information obtained
from the query itself, views to which the query is addressed, integrity con-
straints and the schema of data queried. The important note is that data
and even statistic about data are not involved in query rewriting. It is used
at the phase of cost based plan optimization.

The emergence of XQuery [3] as pretending to be the standard declarative lan-
guage for querying XML data [1] calls for rewriting techniques that meet the
same challenges as those for traditional query languages but developed in new
XQuery terms. This paper is devoted to a comprehensive discussion of XQuery
rewriting in the presence of views and/or data schema.

Moving towards an exhaustive set of rewriting rules for XQuery, we have iden-
tified the optimization tasks that can be naturally accomplished at the phase of
rewriting. Some of those tasks seem to be solved by us in the BizQuery virtual
integration system [21], and the rules and algorithms on which the implementa-
tion is based are described in this paper. For the rest tasks, preliminary ideas
are considered.

We have realized the need for advanced XQuery rewriting facilities during the
work on the BizQuery virtual integration system. This work helps us not only to
understand the significant importance of XQuery rewriting but also reveal goals
of rewriting optimization in respect to XQuery. Therefore, in order to make our
ideas more clear we would like to say a few words about the BizQuery project.

1.1 BizQuery Integration System and Needs for Query Rewriting

BizQuery is a system for querying data across multiple heterogeneous data
sources in a uniform way. In essence, a global schema is created to represent
a particular application domain and data sources are mapped as views onto the
global schema. Global schema is described in a XML schema definition language
(BizQuery supports Relax NG [4]), source data schemas are described in Relax
NG, and views are specified in XQuery. BizQuery employs virtual approach to
data integration and supports XQuery as external interface. The user asks an
XQuery query over the global schema and the data integration system merges
it with the views to which the query is addressed. Then the merged query is op-
timized and splitted up into subqueries over the data sources. There subqueries
are translated into query languages supported by data source management sys-
tems and are sent to the sources. In case of a cross-source query (i.e. a query
addressing two or more sources), the subqueries are executed on the side of data
sources to be integrated, and part of the query is executed on the side of Biz-
Query (in general, this part of query is very important and needs to be carefully
optimized). At that BizQuery tries to select the biggest subqueries to send to
data sources. More on BizQuery can be found in [21].

Our aims were not to restrict facilities for global schema definition by the
structural organization of data sources to allow presenting integrated data in
any desired form. This is accomplished by specifying views over the source data
structures. It required using the XQuery transformational facilities to full extent.

Notice that because the current version of XQuery [3] provides the only way
to perform transformation in XQuery: to build new XML structures from the
existing ones using the XML element and attribute constructors that will form
the desired XML data. Analyzing the obtained views, it becomes obvious that
queries with predicates issued to transformational views can be rewritten to
equivalent queries changing the order of the operations and applying predicate
as soon as possible. This well known practice is called “predicate push-down”.
It allows the system not to materialize the whole view before the predicates are
applied. Instead of this the system may transform smaller amount of data after
their selection with the pushed predicates. Besides it does not often require the
information from schema to perform rewriting because the necessary structural
information is captured in the view definitions in the form of XML element and
attribute constructors. “Predicate push-down” technique is not restricted by
dealing with transformational queries but also may be useful to optimize queries
containing “joins”.

Also implementing XQuery for data integration purposes we encountered
the following difficulty. A subset of XQuery operations relies on the notion of
unique identity as defined in [2]. For instance, the union operator, that takes two
sequences as operands and returns the sequence containing all the items that
occur in either of the operands, eliminates duplicates from their result sequences
basing on the identity comparison. Unique id is an internal thing of data source.
Thus such operations must be passed to the data source for processing but it
can be impossible in case of cross-source queries. Applying rewriting techniques
might make it possible to rewrite the query into equivalent one that doesn’t
contain such operations.

1.2 Goals of XQuery rewriting

Analyzing BizQuery experience and works on rewriting optimization for tra-
ditional query languages [16–20], we have tried to state the goal of XQuery
rewriting.

The goal of XQuery rewriting is fivefold:

– Perform natural heuristics. Certain heuristics can be used in XQuery rewrit-
ing and are generally accepted in the literature as being valuable. Examples
of those are “predicate push-down”, in which predicates are applied as early
as possible in the query (i.e. they are “pushed” from their original positions
into sub-queries, views, etc) and “eliminate redundant computation” (i.e.
reduce expressions that can be computed without data access).

– Perform natural heuristics in the presence of calls to the user defined func-
tions. User defined functions (formulated in XQuery) are very important
because some queries, such as queries to recursive XML structures, cannot
be expressed without using such functions. That is why query rewrite en-
gine should be capable of performing natural heuristics described above for
queries with user defined function calls.

– Make queries as declarative as possible. In declarative languages such as
XQuery, several alternative formulations of a query are often possible. These
expressions can enforce plan optimizer into choosing query execution plans
that are varying in performance by order of magnitude. Some of such query
formulations might be more “procedural” than others enforcing a way of
query execution. A major goal is the transformation of such “procedural”
queries into equivalent but more declarative queries for which more query
execution plans can be generated.

– Transform a query into “well-aimed” one on the basis of schema informa-
tion. XQuery allows formulating queries when the user have vague notion
about schema. Execution of such queries can lead to superfluous data scan-
ning. Sometimes it can be avoided by means of rewriting the query into one
returning the same result but scanning less data.

– Eliminate operations based on identity. Such operations can be unfeasible
in distributed environment but they might be transformed into expressions
without such operations as it was argued in 1.1.

Notice that only the last goal is specific for integration system while others are
useful for XML DBMS with local data storage.

1.3 Related work

Research on XQuery optimization is now at the early stage. There is only a few
works on that. As regards XQuery rewriting, a suggestive rather than complete
set of rules is given in [9]. In [10] a set of equivalent transformation rules are
defined that bring a query to a form which can be directly translated to SQL, if
possible. Although these rules are designed to facilitate XQuery to SQL trans-
lation, they are also useful for general-purpose optimization such as predicate
push down and prior normalization rules that prepare the query to be processed
by rewrite engine.

We were inspired by works on rewriting optimization for SQL [16–20]. These
are a thorough research on the matter and much of this can be adapted to
rewriting XML query languages.

Also due to strong similarity between XML and semi-structured data [11–
13], works on optimization for semi-structured query languages [14, 15] can be
of much help.

1.4 Structure of the paper

Section 2 presents the abstract representation of queries used by the BizQuery
rewriter. The rewriting rules for predicate push down are presented are presented
in Section 3. An extension of these rules for rewriting queries with calls to user-
defined functions is described in Section 4. Future work and conclusion appear
in Section 5.

2 Algebra XML Schema Definition Language for XQuery
Rewriting

Fig. 1. defines the grammar in BNF for the algebra (i.e. the convenient syntax
in which rewriting rules will be specified and that can be directly mapped onto
in-memory structures for internal representation).

<name>::= /*element or attribute name*/
<fun-name>::= /*function name*/
<var>::= /*variable name*/
<const>::= /*constant value of Boolean, Integer or String type*/
<test>::=
/*it is used in children and descendant to filter nodes*/
node() /*returns nodes of all kinds (element, attribute,
text, etc.)*/
/*returns elements with the given name*/
| element-test(<name>)
/*returns all elements*/
| element-test(*)
/*returns attributes with the given name*/
| attribute-test(<name>)
/*returns all attributes*/
| attribute-test(*)

<function definition> ::= fun <fun-name>(<var>, ...,<var>) = <exp>

<exp> ::= <const>
| <var>
| for <var> in <exp> do <exp> /*iteration*/
| if <exp> then <exp> else <exp> /*conditional*/
/*element and attribute constructors*/
| element(<tag-name>, <exp>) | attribute(<tag-name>, <exp>)
/*computed element and attribute constructors*/
| element(<exp>, <exp>) | attribute(<exp>, <exp>)
/*XML node tree traversal*/
| children(<exp>,<test>) | descendant(<exp>,<test>)
| parent(<exp>)
/*set-theoretic operations*/
| union(<exp>, <exp>) | intersect(<exp>, <exp>)
| except(<exp>, <exp>)
| sequence(<exp>, <exp>) /*sequence concatenation*/
| () /*empty list*/
| <exp> * <exp> | <exp> > <exp> | <exp> = <exp> | <exp> and <exp>
| <fun-name>(<exp>, ...,<exp>) /*function call*/
| dereference(<exp>)
/*existential and universal quantifiers*/

| some <var> in <exp> do <exp> | every <var> in <exp> do <exp>
| empty(<exp>) /*is the sequence empty?*/
| name(<exp>) /*name of element or attribute*/
| node-kind(<exp>) /*returns "element", "attribute", "text"*/

Fig.1. Algebra Grammar
Our algebra is not complete but captures the essence of XQuery. It is close

to that used in [9]. Some of the above expressions are in fact shorthands and
can be expressed in others (e.g. some expression can be rewritten using for, if,
empty). They are left in their original form because, if rewritten, they become
less declarative and enforce some concrete implementation.

Almost all XQuery expressions are translated directly into the algebra, except
let and where clauses. Basic transformation principles are:

– A sequence of for-clauses is translated into nested for-iterators.
– Let-clause is treated as syntactic sugar and all occurrences of the variable

defined in a let-clause are replaced with the bound expression.
– Where-clause in for v in exp where exp1 return exp2 is treated as syn-

tactic sugar for if-expression in the algebra and is translated as follows:
for v in exp do if expr1 then exp2 else ().

Consider an example of typical XQuery query and its translation into the algebra.

FOR $e IN document("employees.xml")/data/employee,
$d IN document("department.xml")/data/department

LET $dep_name:=$d/name/node()
WHERE $e/dep-no/node()=$d/no/node() and $e/age/node() > 25
RETURN
<person>
<name>{$e/name/node()}</name>
<department_name> {$dep_name} </department_name>

</person>

The query demonstrates a FLWR expression (i.e. a series of FOR, LET, WHERE
and RETURN clauses) that is the main pattern for XQuery query formula-
tion. XQuery query is usually composed of FLWRs that can be nested with
full generality. In this query $e iterates over employees stored in employee.xml
document. For each value bound with $e, $d iterates over departments stored
in department.xml document. For each pair of bindings ($e, $d), the value
of $dep_name in the LET-clause is computed. Then each triple of the form
($e, $d, $dep_name) is subject to further filtering by the WHERE-clause.
RETURN-clause containing constructors of XML elements is executed once for
each triple that is generated by FOR and LET-clauses and satisfies the condition
of the WHERE-clause. This query is translated into the following expression in
the algebra:

for $e in children(children(document("employees.xml"),
element-test(data)),

element-test(employee))
do
for $d in children(children(document("department.xml"),

element-test(data)),
element-test(department))

do
if children(children($e, element-test(dep-no)), node()) =

children(children($d, element-test(no)), node())
and
children(children($e, element-test(age)), node()) > 25

then
element(person,

sequence(
element(name,

children(children($e, element-test(name)),
node())),

element(department_name,
children(children($d, element-test(name)),
node()))))

else ()

In the introduction we discussed that the schema of XML document queried
can be used in XQuery rewriting, so availability of the schema is assumed when
XQuery rewriting implementation in BizQuery is concerned. For the time being,
several languages for schema definition exist (e.g. DTD [1], XML Schema [5, 6],
Relax NG [4]). BizQuery supports Relax NG, but the language used to describe
the schema is not so important with respect to query rewriting. It is because
schema information is used mainly through type inference. By “type inference”
we mean here that a schema of a given query result is constructed on the basis of
the query and the schema of the addressed XML document. Thus, choosing any
specific schema definition language mainly determines type inference techniques
used but not rewriting ones. Examples of this paper use DTD because of its
compact syntax.

3 Predicate push down rewriting rules

Query simplification by rewriting can often reduce the size of the intermediate
results computed by a query executor. It can be achieved by changing the order
of operations to apply predicate as soon as possible. Let’s consider an example.
Suppose we have a query formulated as follows (algebra defined in the previous
section is used to present the query):

for s in
(for b in children(children(document("catalog"),

element-test(catalog)),
element-test(book))

do
element(book,
sequence(
element(title,children(children(b,

element-test(title)),
node())),

element(price,children(children(b,
element-test(price)),

node())*2))))
do
if children(children(s, element-test(title)), node()) =

"Seven years in Tibet"
then s
else ()

This query might have been obtained as the result of merging a transformation
view (that returns all books from catalog with the title and price doubled) and a
query with predicate (that selects all books named "Seven years in Tibet").
If the query could be given to the execution engine that processes the operations
in the order specified in the query, it would lead to constructing the new book
element containing title and doubled price for each book in the database and
then comparing the title of the book with the string "Seven years in Tibet".
Thus, transformation is performed for all books while a few of them have the
title specified in the query and will be returned as the query result.

In order to avoid undesired overheads as in this example, we propose a set
of query rewriting rules (see Fig. 2) mainly aimed at pushing predicate down.

(1) for v2 in (for v1 in e1 do e2) do e3 =
for v1 in e1 do e3{v2:=e2}

(2) for v in element(e1, e2) do e3 = e3{v:= element(e1, e2)}
(3) for v in (if e1 then e2 else e3) do e4 =

if e1 then (for v in e2 do e4) else (for v in e3 do e4)
(4) for v in e1 do (if e2 then e3 else e4) =

if e2 then (for v in e1 do e3) else (for v in e1 do e4)
/*if there is no occurrence of v in e2
(e2 is independent of v)*/

/* ? is child or descendant */
(5) for v in e1 do ?(v, node-test) = ?(e1, node-test)

/* ? is union or intersect or except*/
(6) for v in sequence(e1, e2) do e3 =

sequence(for v in e1 do e3, for v in e2 do e3)

/* ? is some, every */
(7) for v in (? v1 in e1 satisfy e2) do e3 =

e3{v:= (? v1 in e1 satisfy e2)}

/* ? is child or descendant */
(8) ?(for v in e1 do e2, node-test) =

for v in e1 do ?(e2, node-test)
(9) ?(if e1 then e2 else e3, node-test) =

if e1 then ?(e2, node-test) else ?(e3, node-test)
(10) ?(element(e1,e2), node-test) =

for v in e2 do (if c then v else ())
/*c is an expression constructed by node-test. For example,
if node-test is element-test(name) then will be
node-kind(v)="element" and name(v)="name"*/

/* ?? is union or intersect or except or sequence */
(11) ?(??(e1,e2), node-test) =

??(?(e1, node-test), ?(e2, node-test))

/* ? is union or intersect or except or sequence */
(12) e1 ? (if e2 then e3 else e4) =

if e2 then (e1 ? e3) else (e1 ? e4)
(13) e1 union element(e2,e3) = sequence(e1, element(e2,e3))

/*because element returns a new element with a new id*/
(14) e1 intersect element(e1,e2) = () /*for the same reason*/
(15) e1 except element(e1, e2) = e1 /*for the same reason*/

/* ? is some or every */
(16) ? v in (for v1 in e1 do e2) satisfy e3 =

? v in e1 satisfy e3{v1:=e2}
(17) ? v in (if e1 then e2 else e3) satisfy e4 =

if e1 then (? v in e2 satisfy e4) else (? v in e3 satisfy e4)
(18) ? v in e1 satisfy (if e2 then e3 else e4) =

if e2 then (? v in e1 satisfy e3) else (? v in e1 satisfy e4)
/*if e2 is independent of v*/

Fig. 2. Rewriting rules for predicate push down (vi - variable name; ei - any
expression; e1v:=e2 - replace all occurrences of v in e1 with e2)

Rules presented in Fig. 2 are got by examining pairwise com-
binations of the algebra operations. There are also rules that en-
able rewriting expressions where some arguments of operations are con-
stants that unambiguously determine the values of the expressions (e.g.
for v in () do e = (); name(element(book,e)) = "book"; etc.). These
rules are straightforward and not presented here. For a query addressed to a
virtual document (i.e. the content of a document defined by view) there is a
very useful rewriting rule for a modified version of dereference. In the algebra
dereference is defined as dereference(e) where e is an expression that should
return a sequence of string values, and the result is a sequence of all XML
elements in the queried document that have an attribute of type ID and its

value belongs to the sequence returned by e. This definition conforms to the
XQuery specification. However the problem is that which attribute has type ID
is known only when the schema is available. Even if the schema is available,
we might want to treat some attributes obtained in the result of a query (e.g.
attributes in a virtual document) as having type ID but this treatment cannot
be specified in XQuery query and cannot be inferred. Some implementations
(e.g. [22]) support a modified dereference. The modified version of dereference is
dereference(e, element-name, attribute-name) where e is as in the stan-
dard one and the result is all XML elements that have the given element name
and attribute name, and the value of the attribute belongs to the sequence re-
turned by e. For this modified version, the following rule eliminates dereference
allowing going on rewriting:

dereference(e, element-name, attribute-name) =
for v in descendant(document("foo.xml"),

element-test(element-name))
do

if some v1 in e
satisfy v1 = children(v, attribute-test(attribute-name))

then v
else ()

Applying rules described in this section to the above example, we can get more
optimal query (rules applied are 1, 10, 6, 2, 10):

for b in children(children(document("catalog.xml"),
element-test(catalog)),

element-test(book))
do
if children(children(b,element-test(title)), node()) =

"Seven years in Tibet"
then
element(book,
sequence(
element(title,children(children(b,

element-test(title)),
node())),

element(price,children(children(b,
element-test(price)),

node())*2))
else ()

4 Rewriting rules for queries with calls to user defined
function

XQuery supports the notion of function defined in XQuery itself that can be
treated as a parameterized query called setting the values of parameters. Func-

tion definition can be recursive. Rules described in the previous section can be
used to rewrite queries that don’t contain function calls though using functions
in query definitions is common practice and a rewriting technique that is not
able to handle such queries cannot be considered full value. In this section an ap-
proach to rewriting queries with function calls is proposed. Before getting down
to considering the approach itself, let’s say a few words about why functions
are so important in XQuery and techniques for efficient processing function calls
is of so great demand. The point is that functions in Query serve not only as
a mean to improve query modularity and expression reuse but there are also
important tasks that cannot be accomplished without using functions. Thus,
the basic capability of XQuery is implemented in functions. A very illustrative
example of that is provided by transformational queries like the following: To
leave the whole XML document as it is except doubling the contents of all ele-
ments named “price”. If the XML document does not contain recursive element
definitions with unlimited level of nesting, in the presence of a schema of this
document we can express the query using subqueries nested in XML element
constructors. This query will rebuild the document doubling only the content
of price elements and reproducing all the rest without modification. But this
query can be formulated in a shorter form using recursive function traversing
the document (that is presented as a tree in the XML model). Moreover, it
can be done without employing information from the document schema that
significantly simplifies writing the query. Further to that, in case of recursive
XML element definitions, the only way to express the query is to use a recursive
function!

Keeping all considered above in mind, let’s proceed to discussion of the rewrit-
ing optimization for queries with function calls. We believe that a more effective
query can be obtained replacing the function call with the function body with
proper actual parameters substitution during query rewriting. Though such a
strategy of rewriting does not allow using the advantages of subquery reuse,
often allows reducing the query considerably that leads to more efficient query
processing in the end.

Such kind of rewriting allows us to use all the rules specified in the previous
section without any modification. But the problem that immediately arises is
how to avoid an infinite loop of function call replacements when recursive func-
tions are concerned. This problem follows from the fact that the condition of
recursive function termination depends on data in general and thus cannot be
checked in many cases during rewriting because the rewriter doesn’t have access
to the data. But having the schema of the XML document queried and involving
type inference some conditions can be evaluated without access to the data. An
example of such condition is name(\$k)="Book". The condition compares the
name of an XML element bound to $k with "Book". The result of the condition
can be evaluated inferring the type of the expression bound to $k.

In the current version of the rewriting engine we implement an algorithm
that is not general but is suitable for many queries used in practice according
to our experience. This algorithm can identify recursive function that may be

rewritten with the function call replacement technique without leading to the
infinite replacement loop. The algorithm takes the function definition as input
and returns whether calls to the function can be replaced with the function body
for subsequent rewriting or not. If yes, the replacements take place, if no, calls
to the function are remained unprocessed by the rewriter engine. The following
is a brief description of the algorithm.

The algorithm is based on the assumption that expressions of two types are
used within functions in queries to terminate recursive calls (processing of other
types of expressions can be added in future when identified):

– If-expression
(i.e. if <condition> then <expression1> else <expression2>) when
only one expression (i.e. expression1 or exression2) contains recursive
function call(s).

– For-expression
(i.e. for <variable name> in <expression1> do <expression2>) when
recursive function calls are in expression2 and the termination condition is
empty(expression1) because in this case expression2 is not evaluated.

The algorithm is two-step.
At the first step, for given function definition, a set of all termination con-

ditions found in the function body is constructed by gathering all termination
conditions of the form described above.

At the second step, termination conditions in the set constructed during the
first step are analyzed with the object to find out whether the condition can
be evaluated without accessing data (i.e. using type inference on the basis of
information obtained from the schema of a document to which the query is
addressed).

This analysis can be described in the form of two-state machine. The states
are normal and anxious. For each state all query operations are divided into
groups. Roughly speaking, the machine traverses the termination condition in
wide-first order and depending on what group the current operation belongs
to, its arguments are analyzed by the machine in different ways: the machine
changes its state or goes on analyzing in the same state or stops identifying that
condition can not be evaluated. Group membership is verified according to the
current state of the machine. The division into groups is needed because, for
instance, the child operation inside argument expression of the name operation
can be evaluated over the schema while it cannot be done if child is inside an
argument of the comparison operation (e.g. >). If machine manages traversing
the condition to the end without identifying that condition cannot be evaluated
then this condition can be evaluated over the schema.

More precisely, the machine starts in the normal state and traverses the
analyzed condition taking the current operation and acting depending on the
current state:

– If the machine is in the normal state then

• if the current operation belongs to the group of suspicions operations: =,
>, *

• then the machine moves into the anxious state because evaluation of
these operations requires involving data and analyzes each argument of
the current operation.

• else the current operation does not belong to the suspicions group (it can
be name, empty, node-kind, for, or) and the machine goes on analyzing
argument expressions in the normal state because the current operation
can be evaluated over the schema.

– If the machine is in the anxious state then
• If the current operation belongs to the group of fatal operations: child,
descendant, parent

• then the condition is identified as one that can not be evaluated without
involving data.

• else
∗ If the current operation is for
∗ then the machine stays in the anxious state and goes on analyzing

the arguments in the do-clause because for is just an iterator and
the result of it depends on the expression in the do-clause statement

∗ else the current operation is not fatal and not for (it can be name,
empty, node-kind, and, or) and the machine move into the normal
state and goes on analyzing the arguments.

Let’s consider an example of rewriting a query containing a call to a recursive
function to show how principles and algorithm described above works in practice.
Suppose the schema of a document queried is (presented in DTD):

<!ELEMENT catalog (book | magazine)*>
<!ELEMENT book (title, price)>
<!ELEMENT magazine (title, price)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>

The definition of a recursive function that traverses the document and doubles
price of all books remaining all the rest unchanged:

fun transform($s) =
for $k in children($s, node())
do
if name($k)="price" and name(parent($k))="book"
then element(price, children($k, node())*2)
else
if node-kind($k)="text"
then $k
else element(name($k), transform($k))

This function doesn’t depend on a schema of a document to be processed.
A query with call to this function is “select books with price greater then 20”

after applying function “transform” to the document:

for $c in
children(transform(element("input",

children(document("catalog.xml"),
element-test(catalog)))),

element-test(book))
do
if children(children($c, element-test(price)), node())>20
then $c
else ()

Rewriting the query, rewriter should check whether calls to transform could be
replaced with the function body without resulting in infinite loop or not. The
algorithm works as follows:

At the first step, termination conditions in transform is identified. It is
a set of expressions: empty(children($s, node())), name($k)="price" and
name(parent($k))="book", node-kind($k)="text".
At the second step, rewriter analyzes whether these expressions can be evaluated
on the schema (i.e. the state machine works). Because all of them can be evalu-
ated by means of type inference, rewriting with function body substitution can
be performed. After rewriting, we get another expression of the original query
with predicate pushed down (this transformed query depends on the schema of
“catalog.xml”):

for $k in children(children(document("catalog.xml"),
element-test(catalog)),

node())
do
if name($k)="book"

and
children(children($k, element-test(price)), node())*2 >20

then
element(book,
sequence(
element(title, children($k, node())),
element(price, children($k, node())*2)))

else ()

5 Conclusion and Future work

The results described in this paper have been implemented and are used success-
fully within the BizQuery prototype system. The techniques of XQuery query
rewrining have given us a possibility to decompose an original query with sub-
stituted views and exposed (if possible) function calls into a set of “maximal”
subqueries to be executed by local DBMs. This techniques also provide us with
a possibility to generate a rich set of final part of query execution on the side of
BizQuery engine. The main conclusions of this work are as follows:

– Query rewriting is extremely important for XML-based virtual data integra-
tion systems.

– The major part of rewriting techniques that have been developed within this
work may be useful for XQuery optimization in native XML-based systems
too.

– It’s very reasonable to continue the work to get a really exhaustive set of
rewriting rules for XQuery optimization to archive all goals identified in the
Introduction to the present paper.

In introduction to this paper the goals of XQuery rewriting were identified. For
the first two the techniques were proposed in this paper. The last three needs
to be archived: make queries as declarative as possible, transform a query into
“well-aimed” one on the basis of schema information, and eliminate operations
based on identity. Here some preliminary ideas are discussed. Making queries
more declarative is well elaborated for relational query languages such as SQL
[16–20]. The major strategy used is to rewrite subqueries into joins because there
are more options in generating execution plans for them that increases possibility
to find the most optimal one. It is not quite right when XQuery is concerned.
XQuery is not so declarative and there is less freedom in generating execution
plans for the XQuery “join”. It follows from the fact that XML items are ordered
as defined in [2]. Join in XQuery is expressed as nested for iterator and the outer-
most for expression determines the order of the result. It means that XQuery
join doesn’t commute as relational join does that doesn’t allow evaluating join
in any order. But XQuery also supports for unordered sequences, which enables
commutable joins. In this case the relational techniques mentioned above seems
to be adaptable for the purpose of XQuery optimization.

The execution of some XQuery queries may lead to data scanning that is a
priori unnecessary. But support for such queries is very useful because it allows
the user to formulate queries not keeping the schema of the addressed data in
mind. This unnecessary data scanning can be avoided if the query is rewritten
in more precise one by analyzing the schema. For example, suppose we have a
DTD:

<!ELEMENT catalog (book | CD)*>
<!ELEMENT book (title, ISBN, price)>
<!ELEMENT CD (performer, title, price)>

and a query is /catalog/*[ISBN/text()="foo"]. To process this query the
system should scan book and CD elements. This query can be rewritten in
/catalog/book[ISBN/text()="foo"] because it is known from the DTD that
only book elements contain ISBN subelement. This new query returns the same
result as the original query but scanning CD elements is not performed. We are
planning to identify cases when a data schema can help and support them in
future versions of BizQuery.

We argued in the introduction of this paper that execution of operations
based on the identity is problematical in distributed systems. We have carried
out some preliminary analysis of queries with such operations. It turns out that

many reasonable queries with parent and union operations, for example, can
be rewritten in equivalent queries that don’t contain such operations, and com-
plexity of new queries is comparable to that of original ones. Unfortunately, for
some queries the rewritten form can be much more complex but we find these
queries unreasonable and infrequent. It gives us a hope that such rewriting can
be useful in practice. It is still not clear whether all identity-based operations
can be rewritten. But it can be easily shown that ids in the XML data model are
computable: id of XML item can be mapped onto the path from the document
root to that item because XML item tree is ordered (it can even be rewritten
using the XPointer abbreviated syntax [7], for example, /1/3/4/1/3). The fact
that ids are computable might help to prove that all identity-based operations
can be rewritten into others.

6 Acknowledgments

Thanks a lot to Kirill Lisovsky, Leonid Novak, and Andrei Fomichev for many
discussions during the work on the XQuery rewriter and this paper.

References

1. “Extensible Markup Language (XML) 1.0”, W3C Recommendation, 10 February
1998, http://www.w3.org/XML/

2. “XQuery 1.0 and XPath 2.0 Data Model”, W3C Working Draft, 20 December 2001,
http://www.w3.org/TR/query-datamodel/

3. “XQuery 1.0: An XML Query Language”, W3C Working Draft, 20 December 2001,
http://www.w3.org/TR/xquery/

4. “RELAX NG Specification”, OASIS Committee Specification, 3 December 2001,
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

5. “XML Schema Part 1: Structures”, W3C Recommendation, 2 May 2001.

6. “XML Schema Part 2: Datatypes”, W3C Recommendation, 2 May 2001.

7. “XML Pointer Language (XPointer) 1.0”, W3C Candidate Recommendation, 7
June 2000.

8. Klemens Bohm, Kathrin Gayer, Karl Aberer, M. Tamer Ozsu, “Query Optimiza-
tion for Structured Documents Based on Knowledge on the Document Type Defi-
nition”, Advances in Digital Libraries Conference, April 1998

9. Mary Fernandez, Jerome Simeon, Philip Wadler. “A semistruc-
tured monad for semistructured data”, ICDT, January 2001,
http://www.research.avayalabs.com/user/wadler/topics/xml.html

10. Ioana Manolescu, Daniela Florescu, Donald Kossmann, “Answering XML
Queries on Heterogeneous Data Sources”, VLDB Conference, 2001,
http://www.vldb.org/dblp/db/conf/vldb/vldb2001.html

11. S. Abiteboul. “Querying Semi-Structured Data”, available at http://pub-
db.stanford.edu/publist.html

12. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom. “Lore: A
Database Management System for Semistructured Data”. Available at www-
db.stanford.edu/lore

13. S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Weiner. “The Lorel query lan-
guage for semistructured data”. International Journal on Digital Libraries, 1(1):68-
88, April 1997.

14. P. Buneman, S. Davidson, G. Hillebrand, D.Suciu. “A query language and opti-
mization techniques for unstructured data”. In Proc. of ACM SIGMOD Conference
On Management of Data, pages 505-516, Montreal, Canada, 1996.

15. Mary Fernandez, Dan Suciu. “Optimizing Regular Path Expressions Using Graph
Schemas”, available at http://citeseer.nj.nec.com/fernandez98optimizing.html

16. Hamid Pirahesh, Joseph M. Hellerstern, Waqar Hasan. “Extensible/Rule based
Query Rewrite Optimization in Starburst”, SIGMOD International Conference on
Management of Data, 1992.

17. W. Kim. “On Optimizing an SQL-like Nested Query”, ACM Transactions on
Database Systems, 7(3), September 1982.

18. Richard A. Gansky and Harry K. T. Wong. Optimization of Nested SQL Queries
Revisited. In Proc. ACM-SIGMOD International Conference on Management of
Data, pages 23-33, 1987.

19. Umeshwar Dayal. “Of Nests and Trees: A Unified Approach to Processing Queries
that Contain Nested Subqueries, Aggregates, and Quantifiers”, VLDB Conference,
1987.

20. Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, Raghu Ramakr-
ishnan. “Magic is Relevant”, SIGMOD International Conference on Management
of Data, 1990.

21. Maxim Grinev, Sergei Kuznetsov. “An Integrated Approach to Semantic-Based
Searching by Metadata over the Internet/Intranet”, 5th East-European Confer-
ence on Advances in Databases and Information Systems (ADBIS), Professional
Communications and Reports, Vol. 2, 2001

22. Kweelt project, http://sourceforge.net/projects/kweelt/

