
Transaction Isolation In the Sedna Native XML DBMS

c© Peter Pleshachkov Leonid Novak

Institute for System Programming of the Russian Academy of Sciences,
B. Kommunisticheskaya, 25, Moscow 109004, Russia

peter@ispras.ru, novak@ispras.ru
Ph.D. Advisor S. D. Kuznetsov

Abstract

XML has become the most important tech-
nique to exchange data in World Wide Web.
As consequence, an interest to native XML
databases has surfaced. Concurrency con-
trol methods for traditional databases are
not adequate for XML databases, because
they do not capture the specific of XML
data model. In this paper we propose a lock-
ing mechanism, developed in Sedna, which
allows to achive a high degree of concur-
rency and takes into account the proper-
ties of structural and manipulation parts of
XML model.

1 Introduction

The use of the extensible markup language XML [13]
for electronic data interchange leads to an enormous
growth of the number of XML documents. The num-
ber of different applications supporting XML grows
rapidly too. So the challenge of isolating different
applications in XML environment from each other
is very actual. There are essentially three possibili-
ties of storing XML documents: to use file system,
RDBMS [4] or a native XML database management
system (XDBMS for short). The first and second
approaches poss an obvious imperfections from an
isolation point of view [10, 2], and this is the reason
why synchronizing protocols for XDBMSes are ex-
tensively being studied and developed now. This pa-
per introduces synchronizing method of XML-data,
based on locking techniques, which was developed in
Sedna [8]. Our synchronizing method takes into ac-
count the properties of structural and manipulation
parts of XML model.

Sedna is a full-featured native XML database
management system, which is being developed by
the MODIS R&D group of ISP RAS. It supports
XQuery [14] language for query facilities. In order
to support update facilities XQuery language was
extended. Sedna update language is very close to
[11].

There are several protocols [1, 7], which allow to
synchronize hierarchical data via data locking, but

Proceedings of the Spring Young Researcher’s Collo-

quium On Database and Information Systems SYR-

CoDIS, St.-Petersburg, Russia, 2004

most of them exploit the concept of intention locks.
It means that for locking a subtree all ancestors of
the root of this subtree must be locked in the in-
tention mode. Thus, the operation of locking an
entire subtree of XML document is needed informa-
tion about nodes, which are distributed over XML
document, i.e. the locking operation does not poss
the locality property.

In Sedna physical representation of XML docu-
ments [5], using of these protocols leads to a very
expensive locking operation, because all ancestors
of subtree root are stored in different blocks and all
these blocks must be read to the main memory.

This is the main reason why we do not incorpo-
rate these protocols in Sedna. Our locking method
allows to lock subtree without locking ancestors of
the root in intention mode. To lock the whole sub-
tree only descriptor of the root node is needed. We
have achieved this result by using numbering scheme
for locking nodes and subtrees of XML document.

The rest of the paper is organized as follows. In
Section 2 we introduce the storage schema of XML
documents, which we use in Sedna. In Section 3 we
introduce some of the basics relating to the synchro-
nization methods. In Section 4 we present our lock-
ing method, which allows to acquire the arbitrary
entire subtrees of XML documents in efficient way.
In section 5 we present logical locks, which are use-
ful for prevention conflicts at the logical level such
as lost updates, dirty reads and unrepeatable reads.
In Section 7 we discuss the locks, which are useful
for preventing conflicts at the physical level, and we
name them as physical locks. Finally, in Section 8
and 9, we give a brief overview of related work about
XML synchronization and conclusion of the paper.

2 XML storage model

In this section we will describe the main concepts of
Sedna XML storage model, over which the locking
techniques have been developed.

The choice of our physical representation of XML
documents is based on two fundamental principles
of XML-data management:

• The efficiency of XPath evaluation.

• The efficiency of propagating updates.



Consider the main characteristics of physical rep-
resentation of XML documents in Sedna.

1. A descriptive schema driven storage stategy
which consists of clustering nodes of an XML
document according to their positions in the
descriptive schema of the XML document. De-
scriptive schema presents a concise and accu-
rate structure summary of the XML document.
Formally speaking, descriptive schema is a tree.
Every path of the document has exactly one
path in the descriptive schema, and, vice versa,
every path of the descriptive schema is a path
of the document.

2. Each descriptive schema node is labeled with
an XML node kind name (e.g. element, at-
tribute, text, etc.) and has a pointer to data
blocks where nodes corresponding to the de-
scriptive schema node are stored. Some schema
nodes depending on their node kinds are also
labeled with names. Data blocks belonging to
one schema node are linked via pointers into a
bidirectional list. Nodes are ordered between
blocks in document order.

3. The structural part and text values of nodes
are separated. Text values are stored in blocks
according to the well-known slotted-page struc-
ture method [12] developed specifically for data
of variable length. The structural part of a node
reflects its relationship to other nodes (i. e. par-
ent, children, sibling nodes) and is presented in
the form of node descriptor.

4. Each node descriptor contains a pointer to a
numbering scheme. A numbering scheme as-
signs a unique numeric number to each node of
an XML document according to some scheme-
specific rules. The numeric numbers encode
information about the relative position of the
node in the document. Thus, the main purpose
of a numbering scheme is to provide mechanisms
to quickly determine the structural relationship
between a pair of nodes. It provides the mecha-
nism of quickly determining the following struc-
tural relationships between a pair of nodes: (1)
ancestor-descendant relationship, (2) the doc-
ument order relationship. Numbering scheme
allows to support many XQuery-specific opera-
tions.

3 Synchronization Preliminaries

In this section we give an overview of concurrency
control method that are of interest here.

To ensure serializability of transactions we use a
well-known strict two phase locking protocol. We
use logical locks to prevent conflicts at the logical
level such as lost updates, dirty reads and unre-
peatable reads. For prevention physical conflicts we
use physical locks. A problem at the physical level
can occur if one transaction follows a pointer to a
record on some page, while the other transaction up-
dates a second record on the same page and causes

� � �

�

�

�

Figure 1: Compatibility Matrix for lock Modes

a data compaction routine to reassign record loca-
tions. Physical locking is handled by setting and
holding locks on one or more pages during the exe-
cution of a single physical operation. Logical locking
is handled by setting locks on such objects as nodes
and subtrees and holding them either until they are
explicitly released or to the end of the transaction.
For synchronizing read and write operations, we in-
troduce three kinds of locks: shared locks (S), ex-
clusive locks (X) and update locks (U). Read access
requires a shared lock while write access requires an
exclusive lock. An update lock supports read with
(potential) write access and prevents further shared
locks for the same object. An update lock can be
converted to an exclusive lock after the release of
the existing read locks or back to an shared lock if
no update action is needed. The compatibility ma-
trix for lock modes is depicted in Figure 1.

For two phase locking protocol the standard rules
have to be obeyed. Before performing an operation,
the corresponding lock has to be acquired. During
lock acquisition a check for conflicting locks is per-
formed, if a conflict exists the lock requiring trans-
action is blocked, and locks are held till the end of
transaction. If a transaction is blocked, the wait
graph is updated and if it contains a cycle, the trans-
action that completes the cycle is aborted. The se-
lection of a victim is based on the relative ages of
transactions in deadlock cycle. In general, the the
youngest transaction is selected as the victim.

Maintaining locks, granting and declining lock re-
quests are managed by a lock manager component.

In Sedna logical locks are implemented by means
of numbering scheme, which was introduced in Sec-
tion 2. Numbering scheme also can be used for pre-
venting phantoms, because locking of the interval
of numbering numbers, allows to lock all nodes (in-
cluding nodes which are not presented in database),
which labeled with numeric numbers included in this
interval. For example, the interval of numeric num-
bers, which includes all nodes of the certain subtree
(including phantoms) can be calculated by the root
of this subtree.

Our main contribution in this paper is using and
adopting numbering scheme for logical locking mech-
anisms (see Section 5).



4 Numeric Schema as Basics for
Locking

In this section we introduce the details of Sedna
numbering schema, and the main idea of our locking
methos based on the certain properties of numbering
scheme.

A numbering schema of XML document provides
a one-to-one mapping of nodes of XML document
onto numeric numbers. In other words, each node of
XML document has a unique numeric number.

The numeric number of the node consists of two
components. The first one is a prefix and the second
one is a delimiter. Prefix is a string of characters,
while delimiter is a character. We will refer to the
numeric number of node n as (pn, dn), where pn is
the prefix of node n and dn is its delimeter, or simply
as N if prefix and delimeter of numeric number are
not significant.

Below we give a set of definitions concerning nu-
meric numbers.

Definition 1 Let (pn1
, dn1

) and (pn2
, dn2

) are the
numeric numbers of nodes n1 and n2 of some XML
document correspondingly. We regard that the nu-
meric number of n1 is less (<) than numeric num-
ber of n2 if and only if pn1

≺ pn2
, where ≺ is the

lexlexicographical comparison of strings.

Definition 2 Let (pn1
, dn1

) and (pn2
, dn2

) are the
numeric numbers of nodes n1 and n2 of some XML
document correspondingly. We regard that inter-
val of numeric numbers [(pn1

, dn1
), (pn2

, dn2
)] (or

simply [pn1
, pn2

]) consists of all numeric numbers
(pni

, dni
), which satisfy the condition pn1

� pni
�

pn2
.

Definition 3 Let p1 and p2 are the strings of char-
acters. Then the string p1 · p2 is the concatenation
of strings p1 and p2.

The idea of numbering scheme, which provides (1)
and (2) mechanisms (these mechanisms were intro-
duced in Section 2) is based on the following facts:

• For two given strings p1 and p2 such that p1 �
p2 there exists string p such that p1 � p � p2.
For example, if p1 = “abc′′ and p2 = “abcd′′,
then p = “abca′′ (the number of such p is infi-
nite).

• Assume, that node n is the root of the entire
subtree in the document. Then the string in-
terval (pn, pn · dn), sets the range of numeric
numbers for all descendants of node n.

Numbering numbers are asigned to the nodes of
a document in the following way:

• For two given nodes n1 and n2, n1 preceeds n2

in the document order if and only if pn1
≺ pn2

.

• For two given nodes n1 and n2, n1 is an ancestor
of n2 if and only if pn1

≺ pn2
≺ pn1

· dn1

�����

����������

�������	�	�
������	��������
�����

�������������������
�	������
������
�

��������	�	�
�

�����������
����������
�

��������	������� �!���	����

��������	����"��#
�	
����	����

�����������

����������

�������	�	�
��������
��!����	������

�������������#
��$
�!����%	��
�&!�	
'�

��������	�	�
�

��������	�������"��(
���	
�����	����

��������	����)��*�+��������	����

�����������

����������

�������	�	�
�%	����	�
�,
���	�	�
�

�����������
�-�������
�

��������	����"��	
�������	����

��������	����(��
'����	����

��������	����&�������	����

�����������

������

Figure 2: Example of an XML document

The exact algorithm of assigning numeric num-
bers to the nodes of XML document is not very sig-
nificant here and we don’t present it here.

The idea of locking entire subtree of XML docu-
ment using numeric numbers is based on the funda-
mental property of numeric numbers, which is stated
in the following proposition

Proposition 1 Let (pn, dn) is the numeric number
of node n. Then the interval [pn, pn ·dn] includes the
numeric numbers of all descendants of node n.

Thus, the numeric numbers can be used for lock-
ing nodes and subtrees of XML document. The lock-
ing of the node is implemented of locking its numeric
number. The locking of the subtree (assume node n
is the root of this subtree) is corresponds to the lock-
ing of interval [pn, pn · dn]. The correctness of this
idea is guaranteed by proposition 1 .

Below we consider the example of using numeric
schema for locking purposes.

Figure 3 depicts a small XML document lib.xml.
The document contains the list of three books where
each book is described by title, price (optional) and
author, respectively.

Figure 3 shows the tree representation of the
structure of the XML document defined in Figure 2.
The outer element lib is the document node. Nested
elements are connected with edges in tree. To each
node of the tree (except text nodes) the numeric
number is assigned.

To lock the first book element transaction is re-
quired to lock interval [”ab”, ”abm”], while to lock
the last book elemnt transaction is needed to lock
interval [”ap”, ”apm”]. To lock the whole XML doc-
ument interval [”a”, ”az”] must be locked.



��������	�
��

����������	�
��

����������	�
��

����������	�
��

�����

������	


��

�����

������	�
��

������

������	�
��

������

������	


��

�����

������	


��

������

������	�
��

������

������	


��

������

������	�
��

�����

������	�
��

�����

������	�
��

������

������	�
��

������

������	�
��

� �

� � � �

� � � � � �

Figure 3: Example of assigning numbering numbers
to the XML document

The lock all book elements of the document
the following three intervals must be locked:
[”ab”, ”abm”], [”ah”, ”ahm”] and [”ap”, ”apm”] or
simply one interval [”ab”, ”apm”] should be locked.

5 Logical Locks

Logical locks serve for preventing conflicts at the log-
ical level. As mentioned in Section 4 the set of nodes
is locked by means of intervals of numeric numbers.
The locking of one node with numeric number (p, d)
corresponds to the locking of interval [p, p], while the
locking of the whole subtree corresponds to the lock-
ing of interval [p, p · d], where (p, d) is the numeric
number of the root of the subtree to be locked.

Assume that there are m active transactions, and
the intervals Iij

(j = 1..ki) are locked by transaction
Ti with modes Mij

correspondingly. The request for
interval Iiki+1

with mode Miki+1
by transaction Ti

will be granted by lock manager if and only if one of
the following statements is obeyed:

• Iiki+1
does not intersect with all intervals ac-

quired by transactions Tj , j = 1..m, j 6= i.

• if Iiki+1
intersects with several intervals ac-

quired by transactions Tj , j = 1..m, j 6= i, then
Miki+1

is compatible (according to Figure 1)
with each of these intervals.

Actually, intervals can be useful for preventing
phantoms [3]. We demonstrate this idea on example.
Assume that transaction T1 retrieves all books (see
lib.xml) by the following path expression: /lib/book,
while the transaction T2 inserts the price element as
the first child of the first book element. It is obvious
that the price element is the phantom for transac-
tion T1. But the transactions T1 and T2 will not
run concurrently because interval [”ab”, ”apm”] in-
cludes the numeric numbers for price element to be
inserted. The algorithm of assigning numeric num-
bers to the new elements ensures it.

So far, we only considered the locking method
for one node or the whole subtree of XML docu-
ment. Below we present some extensions of our lock-
ing method which allow to increasing the degree of
concurrency.

Sometimes, transaction is needed to lock the part
of the subtree, for example all nodes of the subtree
with depth less than or equal to n, while the depth
of the whole subtree is greater than n. In this case
the lock request will consist of two parts. The first
one is the interval of numeric numbers, which covers
the whole subtree, and the second one is the part of
descriptive schema to which the nodes to be locked
belong. Actually, the part of descriptive scheme con-
sists of the set of scheme nodes. For example, the
part of descriptive scheme, which covers book ele-
ment in lib document is the set of nodes: (book,
title, price, author). We will refer to the part of
descriptive scheme using S letter.

Thus, two locks (I1, S1) and (I2, S2) are compat-
ible if one of the following statements is obeyed:

• I1 does not intersect with I2

• I1 intersects with I2, but their modes M1 and
M2 are compatible.

• The first and second statements are not obeyed,
but the descriptive scheme parts S1 and S2 does
not intersect.

It is obvious, that the using of descriptive scheme
allows to achieve higher degree of concurrency, but
the logic of lock manager becomes more complex.

6 Logical locks escalation

In Sedna, the lock manager component maintains a
count of the locks held by the transaction. If the
number of locks held by one transaction becomes
too large then the lock manager runs the escalation
procedure: the conversion of many fine-granularity
locks into a single coarse-granularity lock.

To tune the lock escalation, we introduce one pa-
rameter: the escalation thresold. If lock manager
detects that the number of locks acquired by one
transaction exceeds the percentage thresold value
defined by the escalation threshold then the locks
held by this transaction are replaced with a suit-
able single lock, which covers all these locks. In our
locking method the escalation can be implemented
by means of replacing a set of intervals Ii with one
interval I, which covers all Ii.

It is obvious, there is a trade-off to be observed
for lock escalation. On the one hand lock escalation
leads to the decreasing of concurrency, but on the
other hand a reduction of the number of held locks
and the number of calls to the lock manager leads
to saving lock manager overhead.

7 Physiacal Locks

Physical locks serve for preventing conflicts at the
physical level. Physical locks are held during the
evaluation of one physical operation. In most rela-
tional databases the granularity of physical locks is
block.

In Sedna we also use blocks as granule for physical
locking. And the simplest way to ensure physical



consistency is to lock the block, where the needed
nodes are stored.

To understand the interrelations between logi-
cal and physical locks consider the evaluation of
the XPath expression /lib/book[title=”Data On the
Web”].

We start evaluation of the query with traversing
the descriptive schema (note: in this paper we do not
consider the synchronization of descriptive schema).
The result of traverse is one schema node that con-
tain pointer to the list of blocks where the descrip-
tors of book nodes are stored. Then transaction will
lock the first block from the list. Traversing this
block transaction will lock the blockes, where the ti-
tle node descriptors of the book nodes are stored. If
transaction find a book, which title is equal to ”Data
on the Web” then the one will lock this book node
at the logical level. When the list of book blocks will
be passed the physical locks can be released, while
the logical locks on the book nodes, which satisfy to
the predicate will be released only at the end of the
transaction.

8 Related Work

Processing of concurrent querying and update of
XML-data has received only little attention so far.

In [9], the synchronization of concurrent trans-
actions is considered in the context of DOM API.
The authors present three types of locks. Node locks
are acquired for the actual nodes, navigational locks
are acquired on virtual navigation edges to synchro-
nize operations on the navigation paths, while log-
ical locks are introduced to prevent phantom prob-
lem. Authors offer rich options to enhance trans-
action concurrency. But synchronization of non-
navigational APIs (like XQuery) is part of future
work.

In [10] the discussion is also based on the DOM
API, several isolation protocols are proposed. But
node locks are not acquired in a hierarchical context,
and lock granularity is fixed for each protocol.

Grabs et. al [6] proposed a combination of well-
known granularity locking and predicate locking
which provides high concurrency, but their locking is
applicable to only restricted XML documents with
simple XPath query for transaction access.

9 Conclusion

Efficient concurrent processing of updates and
queries of XML-data in a consistent and reliable
way is an important practical problem. There are
only few extensions of commercial database systems,
which poorly support XML document processing.

In our paper we presented the physical represen-
tation of XML documents, which we use in Sedna.
Based on this representation, we have introduced
the locking mechanism, which allows acquiring the
nodes and subtrees of XML document in efficient
way. The logical and physical locks have been dis-
cussed. The idea how phantoms problem can be
solved by means of intervals of numeric numbers
is also presented. We pointed out that descriptive

scheme knowledge can improve the degree of concur-
rency.

Future work includes efficient deadlock detection
mechanism for proposed locking method. A recovery
mechanism is also one of the next steps in our plan.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Good-
man, ”Concurrency Control and Recovery in
Database Systems” Addison-Wesley, 1987.

[2] S. Dekeyser, J. Hidders, J. Paredaens, ”A trans-
action model for XML databases”, World Wide
Web Journal, Kluwer, 2003.

[3] K. P. Eswaran, J. Gray, R. Lorie, and I. Traiger,
”The notions of consistency and predicate locks
in a database systems”, Comm. of ACM, Vol.
19, No. 11, pp. 624-633, November 1976.

[4] D. Florescu and D. Kossman, ”Storing and
Querying XML Data using an RDBMS”, IEEE
Data Engineering Bulletin, 1999.

[5] A. Fomichev, M. Grinev, S. Kuznetsov, ”De-
scriptive Schema Driven XML Storage”, Sub-
mitted to ADBIS 2004.

[6] T. Grabs, K. Bohmd, and H. Schek, ”XMLTM:
efficient transaction management for XML doc-
uments”, Proc. of the 19th CIKM Conference,
pp 142-152, 2002.

[7] J. Gray, and A. Reuter, ”Transaction Process-
ing: Concepts and Techniques”, Morgan Kauf-
mann, 1993.

[8] M. Grinev, A. Fomichev, S. Kuznetsov, K.
Antipin, A. Boldakov, D. Lizorkin, L. Novak,
M. Rekouts, P. Pleshachkov, ”Sedna: A Na-
tive XML DBMS”, Submitted to International
Workshop on XQuery Implementation, Experi-
ence and Perspectives (XIME-P), 2004.

[9] M. P. Haustein, and Theo Harder, ”taDOM:
a Tailored Synchronization Concept with Tun-
able Lock Granularity for the DOM API”,
In Proc. ADBIS Conference, LNCS 2798,
Springer, 2003.

[10] S. Helmer, C.-C Kanne, and G. Moerkotte,
”Isolation in XML Bases”, Technical report,
University of Mannheim, Germany, 2001.

[11] P. Lehti, ”Design and Implementation of a
Data Manipulation Processor for an XML
Query Language”, Technische Universitt
Darmstadt Technical Report No. KOM-D-149,
http://www.ipsi.fhg.de/ lehti/diplomarbeit.pdf,
August, 2001.

[12] A. Silberschatz, H. Korth, S. Sudarshan,
”Database System Concepts”, Third Edition,
McGraw-Hill, 1997.



[13] World Wide Web Consortium, ”Extensible
Markup Language (XML) 1.0 (2nd edition)”,
W3C Recommendation.

[14] World Wide Web Consortium, ”XQuery 1.0:
An XML Query Language”, W3C Working
Draft, 13 November 2003.


