Tpyovt UCIT PAH, mom 31, soin. 4, 2019 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019

DOI: 10.15514/ISPRAS-2019-31(4)-10

Simulating Petri Nets with Inhibitor and Reset Arcs

P.A. Pertsukhov, ORCID: 0000-0003-1923-976X <papertsukhov@edu.hse.ru>
A.A. Mitsyuk, ORCID. 0000-0003-2352-3384 <amitsyuk@hse.ru>
PAIS Lab, Faculty of Computer Science,

National Research University Higher School of Economics,

3 Kochnovskiy Proezd, Moscow, 101000, Russia.

Abstract. Event logs of software systems are used to analyze their behaviour and inter-component interaction.
Artificial event logs with desirable specifics are needed to test algorithms supporting this type of analysis.
Recent methods allow to generate artificial event logs by simulating ordinary Petri nets. In this paper we present
the algorithm generating event logs for Petri nets with inhibitor and reset arcs. Nets with inhibitor arcs are more
expressive than ordinary Petri nets, and allow to conveniently model conditions in real-life software. Resets are
common in real-life systems as well. This paper describes the net simulation algorithm, and shows how it can
be applied for event log generation.

Keywords: Petri nets; inhibitor arcs; reset arcs; simulation; event logs

For citation: Pertsukhov P.A., Mitsyuk A.A. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP
RAN/Proc. ISP RAS, vol. 31, issue 4, 2019. pp. 151-162. DOI: 10.15514/ISPRAS-2019-31(4)-10

Acknowledgments. This work is supported by the Basic Research Program at the National Research University
Higher School of Economics.

Cumynsauus ceten MeTpn ¢ UHIMOGUTOPHLIMK AyramMmu U gyramm
copoca

11.A4. Ilepyyxos, ORCID: 0000-0003-1923-976X <papertsukhov@edu.hse.ru>
A.A. Muyiox, ORCID: 0000-0003-2352-3384 <amitsyuk@hse.ru>
Jlabopamopus I[IOUC, gpaxyromem KoMRbIOMEPHBIX HAYK,
Hayuonanvuwiil uccnedosamensvckuil ynusepcumem « Bvicuias wkona sKoHomuxuy
101000, Poccus, Mockesa, Kounosckuii npoeso, 3

Annoranus. JKypHanbl COOBITHH IPOrpaMMHBIX CHCTEM HCIONB3YIOTCS A aHANN3a HMX IIOBEJCHHS U
B3aUMOIEHCTBHSA MEXTy KOMIOHEeHTaMH. MCKycCTBEHHbIE sKypHAIIBI COOBITHI C TOAXOSIIMMH CBOHCTBAMU
HEOOXOJMMBI /Il TECTUPOBAHMUSI aJITOPUTMOB, HCIOIB3YEeMBIX I Takoro aHamu3a. COBpeMEHHBIE METOIbI
MO3BOJLSIOT T€HEPUPOBATH HCKYCCTBEHHBIC JKyPHAIIBI COOBITHH B PE3ylNbTaTe CUMYISIIUU OOBIYHBIX ceTeil
Tlerpu. B 310ii cTaThe MBI IPEACTABIISEM AITOPUTM, TCHEPUPYIOLIMIT JKypHaJbl COObITHIA st ceTeit [letpu ¢
MHIMOUTOPHBIMH JIyraMu M Jyramu cOpoca. CeTu ¢ MHTHOMTOPHBIMHU JyraMu Oojiee BbIPA3HTEIbHBI, 110
CPaBHEHHIO C KIACCHYECKHMH ceTsMH IleTpu, W MO3BOJIAIOT yJOOHO MOAENHPOBATH YCIOBUS B PEalbHOM
nporpaMMHOM obecriedenyn. Oneparyy copoca TakKe pacpoCTpaHEeHbI B pealbHbIX CHCTeMax. B aToli craTbe
OIHKCHIBACTCS ATOPUTM CHMYILSIIUU ceTeil IleTpu ¢ HHrHOUTOPHBIME JlyraMyl i cOpOcaMH, a TakXKe I0Ka3aHo,
KaKuM 00pa3oM ero MOKHO IPUMEHSATH IJIs TeHepalluy JKypHasaa COOBITUH.

KoroueBsie cioBa: ceru IleTpy; HHTHOUTOPHEIE TyIH; YT cOpoca; CUMYIISIHS; XKYPHAIbI COOBITHIT

Jst uuruposanust: Ilepyxos IT.A., Mumok A.A. Cumynsanus cereid [leTpu ¢ MHTHOUTOPHBIMM TyraMu U
nyramu copoca. Tpyast CIT PAH, tom 31, Bbim. 4, 2019 r., ctp. 151-162 (Ha anrawmiickom s3bike). DOIL:
10.15514/ISPRAS-2019-31(4)-10

151

Tlepiryxos ILA., Murtrok A.A. Cumymsigist ceteit [letpu ¢ MHTHOMTOPHBIMU TyraMu 1 gyramu copoca. Tpyost UCIT PAH, Tom 31, Bim. 4, 2019 1., c1p. 151-162

BaaropapHocru. Pabora BbimonHeHa mnpu moajepikke IIporpammbl (yHZaMEHTAIBHBIX MCCIEAO0BAHMIA
HarmoHaIbHOTO HCCIIeIOBATEILCKOrO YHUBEPCUTEeTa BhIcinas kona SKOHOMHUKH.

1. Introduction

Recently, process analytics evolved into an advanced field of computer-based technology.
Automated methods have been created to find bottlenecks and inefficiencies in process models of
information systems.

One particular technology that helps to automate process analysis is process mining [1]. Experts in
this technology employ algorithms and methods which use the records of a system behaviour, which
are called «event logs» or «system logs». This information can be explored to discover a model of
how the real process behaves [1].

An existing process model runs can be aligned to the records of an event log to check if the model
conforms to the real system behaviour [2]. The field also provides an expert with method to
improve/repair processes and process models.

The process simulation methods are also applied in the field of process analytics [3].

Recently, it has been stated that process mining and simulation form “a match made in heaven” [4].
In particular, process model simulation can be applied to look in the future of a process, and to test
what-if alternative scenarios possible because of process change. Moreover, the development of
process mining algorithms is impossible without sample models and event logs with a suitable
characteristics [1]. Sample event logs can be generated using the process model simulation methods
[5]-[8]. Process mining and simulation can also be matched in other way. The results of process
discovery and conformance checking can be applied to improve simulation models.

Various modelling formalisms are employed in the field of process analytics [1], [3]. Among them,
the language of Petri nets is one of the most well-established, well-researched, simple, and
commonly-used modelling languages [9]. Lots of process discovery and analysis techniques are
based on this language [1].

A strength of the Petri net language is that on top of simply defined P/T-nets many extensions have
been built. These are high-level Petri nets: Coloured Petri nets [10], Nested Petri nets [11], Object
nets [12] etc. Method to simulate Petri nets of various types have been proposed in literature.
However, for many types of Petri nets still there are no simulation techniques/tools.

This paper presents an approach and a tool to simulate Petri nets with reset and inhibitor arcs. The
addition of these arc types improves the net expressiveness significantly. Thus, these nets are used
when the process cannot be (conveniently) modelled by P/T-nets.

This paper is organized as follows. Section 2 defines models and event logs. In Section 3 the main
contribution is presented: algorithms to simulate Petri nets with inhibitor and reset arcs. These
algorithms are implemented in the tool which is described in Section 4. Finally, Section 5 concludes
the paper.

2. Petri Nets and Event Logs

In this section, we define process models and event logs. Let N denote the set of all non-negative
integers, and N, = N\{0}.

2.1 Ordinary Petri nets

Petri nets are directed bipartite graphs which allows for modelling and representation of processes
in information systems [13]. More formally, an ordinary Petri net is a triple N = (P, T, F), where P
and T are two disjoint sets of places and transitions, and F € (P X T) U (T X P) is a flow relation.
As graphs, Petri nets have convenient visual representation. Fig. 1 shows an example model.

152

Pertsukhov P.A., Mitsyuk A.A. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 151-162

Tleprryxos IT.A., Murok A.A. Cimymsaast ceteit [Tetpn ¢ HETMOMTOPHBIMM tyramu 1 tyramu cOpoca. Tpyowr UCIT PAH, Tom 31, Bem. 4, 2019 T, crp. 151-162

=

D C

t4 p2 t3
N OL
0

p: t p1 t2

Fig. 1. An ordinary labelled Petri net

Places are shown by circles, transitions are shown by boxes, the flow relation is depicted using
ordinary directed arcs. In fig. 1, there are three places (py, p1,) and four transitions (tq, t,, t3, t4).
Transitions are labelled with activity names from the set A4 U {t}. In the example, A = {4, B, C, D}.
Labels are placed inside the transition boxes. An Petri net can contain invisible (silent) process
actions which are labelled with 7. Labels are assigned to transitions via a labelling function A: T —
AU {7}

A state of an ordinary Petri net is called its marking. It is a function M : P — N assigning natural
numbers to places. In figures, a marking M can be designated by putting M (p) black tokens into a
place p of the net. By M, we denote the initial marking. For example, the initial marking of the net
from Fig. 1 consists of a single token in the place p,.

A transition represents an activity of a process. It is enabled in a current marking if in each of its
input places (for t € T input places are e t = {p | (p,t) € F}) there enough tokens, that is Vp €
t: M(p) = 1. An enable transition may fire that changes a marking of the net. It consumes tokens
from the input places, and produces tokens to output places (for t € T input places are t e =
{p|(t,p) €EFY.

Consider a model from fig. 1: t; is the only enabled transition in the initial marking. It may fire, that
corresponds to an occurrence of activity “A”. Then, the transition consumes a single token from p,
and produces tokens to p; and p,. Fig. 2 illustrates this firing. The firing is local, each transition
fires independently from other transitions.

2.2 Petri nets with Inhibitor and Reset Arcs

In this paper, we consider Petri nets with arcs of two additional types: reset and inhibitor arcs. These
nets also contain places, transitions, and ordinary control flow arcs.

Fig. 2. Firing a Petri net
153

A labelled Petri net with weights, inhibitor and reset arcs (WIR Petri net) is a tuple Ny =
(P,T,F,W,R,1, 1), where

e (P,T,F) isan ordinary Petri net,

e W €F — N, isan arc weight function,

e R c P xT is afunction defining reset arcs,

e | € P X T isan inhibiting relation,

e and A: T — A U {1} is a labelling function.

Fig. 3 shows an example WIR Petri net.

Fig. 3. A WIR Petri net

A reset arc removes all tokens from the place no matter of their number. These arcs also called clear
arcs [14].

In Fig. 3, there is a reset arc from the place p; to the transition t3 labelled with “C”. Reset arcs are
denoted with double arrows at the end. Note that the net contains a loop of two actions “A” (t;) and
“D” (t,). The possible sequence of firings is < ty, ty, ty, ty, t1, t4, t3 >. Before the last step, p; will
contain 3 tokens all of which will be removed by the firing of t5.

An inhibitor arc [15], [16] can be from a place to a transition. This transition cannot fire if there is
a token in place connected with the transition using an inhibitor arc. ot = {p | (p,t) € I} denotes
the set of inhibiting places for t. That is, an inhibiting place allows to prevent the transition firing.
Transitions consume no tokens through inhibitor arcs.

Inhibitor arcs are shown with small circles instead of arrows at the end. In Fig. 3, there is a reset arc
from the place p, to the transition t, labelled with “B”. Thus, t, can not fire if there is a token in p,
no matter how many tokens are in p;. The whole part of the model that consists of places p; and p,,
transitions tg and tg is a switch with two possible states: open (there is a token in p3) / closed (there
is a token in p,).

The firing of t5 closes the switch and deprecates the firing of t,. Thus, only t5 is able to clear tokens
from the place p, if there is a token in p,. The firing of t; will end the process, because it will
consume and remove all tokens from the upper part of the net.

The firing of t4 opens the switch. Then, t, may consume tokens from p; independently of tokens in
other places. Note that the arc from p; to t, has a weight of 2. Thus, each firing of t, consume
exactly 2 tokens, and t, can not fire if there is only one token in p;. Note that a particular WIR Petri
net can contain zero number of reset and inhibitor arcs.

Marking of a WIR Petri net is defined in the same way as for an ordinary Petri net. But the firing
rule is slightly different for WIR Petri nets. Each marking change is called step. In this paper, we
154

Pertsukhov P.A., Mitsyuk A.A. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 151-162

assume that each step consists of a single transition firing. The step from Fig. 2 is denoted by
M [t1)M’, where M'(py) = M'(p2) = M'(p3) = 1 and M'(py) = M'(p,) = 0.

2.3 Event Logs

In this paper, we apply process model simulation to generate event logs with records of the behavior.
We define an event log as a finite multiset of traces € B(A) !. A trace g € A" is a finite sequence
of events from the set A. Note that transitions of a WIR Petri net are labelled with elements of A.
The only transitions which firing leaves no events are silent 7-transitions.

Technically, we record the event logs in XES (Extensible Event Stream) format® that will be
considered in more detail in Section 4.

3. Petri Net Simulation Algorithm

This section describes the algorithm to simulate labelled WIR Petri nets.

The main idea of the algorithm is to iterate over all transitions and fire one of them at each iteration,
recording corresponding events to the log. This procedure is performed in the main generating
function called generateTrace (see Algorithm 1).

Input: transitions, initialMarking, finalMarking,

settings as {maxNumberOfSteps, maxlterations, isRemovingUnfinished Traces}
Output: generated trace or NULL

1: function generateTrace

2: trace « NULL;

3: replayCompleted ~ false;

4: addTraceTolog « false;

5: iteration « 0;

6: repeat

7: moveToInitialState() ;

8: trace —~ createTrace();

9: stepNumber ~ 0;

10:

11: while stepNumber < maxNumberOfSteps
12: and not replayCompleted do

13:

14: transition « chooseNextTransition();
15: if transition = NULL then

16: trace « NULL;

17: break;

18: end if

19:

20: fire(transition, trace);

21: replayCompleted —~ isCompleted(finalMarking);
22: stepNumber ~ stepNumber + 1;

23: end while

24

25: iteration « iteration + 1;

26: until (iteration >= maxIterations or

27: not isRemovingUnfinishedTraces or replayCompleted)
28

29: if not replayCompleted

30: and isRemovingUnfinishedTraces then
31: trace « NULL;

32: end if

! Here B(A*) denotes all multisets over A*, where A* — all finite sequences with elements from A.
2 http://www.xes-standard.org/
155

Tlepiryxos ILA., Murtrok A.A. Cumymsigist ceteit [letpu ¢ MHTHOMTOPHBIMU TyraMu 1 gyramu copoca. Tpyost UCIT PAH, Tom 31, Bim. 4, 2019 1., c1p. 151-162

33: return trace;
34: end function

Algorithm 1. One trace generation

This algorithm works as follows. We have maxIterations attempts to reach the final marking of the
net. By default this number is 10. The function moveTolnitialState initiates the trace generation by
setting a marking of the to My. Then, we create an empty trace by calling createTrace.

At each step of the main loop, the algorithm chooses an enabled transition in the
chooseNextTransition, and fire it (function fire). The function fire changes a marking of the net and
writes an event to the trace. Then we call the function isCompleted to check if we reached the final
marking and update replayCompleted. This loop iterates until we reach the final marking
(replayCompleted = true) or exceed the specified limit of steps for one trace maxNumberOfSteps.
When we cannot find an enabled transition which is ready to fire, we clear the unfinished trace and
begin a new attempt.

If no one of 10 attempts succeeded, we return NULL which will be recorded as an empty trace to
the event log. Note that there is a setting of the prototype tool that removes all empty and unfinished
traces.

The chooseNextTransition function selects an enabled transition using a specified rule. The most
basic implementation of this function is shown in Algorithm 2. Here, the random transition among
all enabled and noise transitions is selected.

Input: allTransitions, noiseTransitions
Output: selected transition or NULL
1: function chooseNextTransition (allTransitions, noiseTransitions)

2: enabledTransitions « findEnabledTransitions();
3: return random transition among enabledTransitions
4: and noiseTransitions or NULL;

5: end function
Algorithm 2. Looking for the next transition

This algorithm is based on the algorithm for ordinary Petri nets [17], and thus, is able to add noise
to the event log. More complex rules to select the enabled transition can be applied. For example,
priorities of preferences can be assigned to the transitions which affect the order of their firing. If
there is no enabled transition, then NULL is returned.

To check if a transition t is enabled, we ensure that all input places connected with ¢t with the help
of ordinary arcs have enough tokens. Besides that, we check that places connected with t with the
help of inhibitor arcs don’t contain any tokens. Reset arcs don’t affect if a transition is enabled or
not. Algorithm 3 shows how this is done.

Input: allTransitions
Output: list of enabled transitions
1: function findEnabledTransitions(allTransitions)

2: enabledTransitions « @;

3:

4: for transition in allTransitions do
5: enabled « true;

6: for arc in transition.inputArcs do
7z if arc.place.numberOfTokens < arc.weight then
8: enabled « false;

9: break;

10: end if

11: end for

12: if not enabled then

156

Pertsukhov P.A., Mitsyuk A.A. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 151-162

Tlepiryxos ILA., Murtrok A.A. Cumymsigist ceteit [letpu ¢ MHTHOMTOPHBIMU TyraMu 1 gyramu copoca. Tpyost UCIT PAH, Tom 31, Bim. 4, 2019 1., c1p. 151-162

13: continue;

14: end if

15: for arc in transition.inhibitorArcs do
16: if arc.place.numberOfTokens > 0 then
17: enabled « false;

18: break;

19: end if

20: end for

21: if enabled then

22: enabledTransitions.add(transition);

23: end if

24: end for

25: return enabledTransitions;

26: end function
Algorithm 3. Finding enabled transitions

Algorithm 4 shows the transition firing function. This function produces and consumes tokens, and
then adds an event corresponding to this transition to the trace. The basic implementation is shown
which considers only transition names. There are much more complicated implementations of this
function for time-driven, resources, and priorities generation modes.

Input: transition, place
Output: traced events
1: function fire(transition, trace)

2: for arc in transition.inputArcs do

3: arc.place.consumeToken (arc.weight) ;

4: end for

5: for arc in transition.inputResetArcs do
6: arc.place.consumeAllTokens () ;

7 end for

8:

9: log transition to trace or perform some noise event
10:

11: for arc in transition.outputArcs do
12: arc.place.produceTokens (arc.weight) ;
13: end for

14: end function

Algorithm 4. Firing function

4. Prototype Tool

The presented event log generation algorithm has been implemented as a prototype tool. It is written
in Java and Kotlin programming languages. In this section, we consider the tool. The tool consists
of two parts: Generation Setup unit and Generation unit.

4.1 Preparing for generation

In preparation part we receive settings from the GUI (see fig. 4) or read a JSON (see fig. 5) file.
Settings from JSON are validated. Then we load the model from a PNML? file and prepare this
model for generation. Inhibitor and reset arcs could be either specified in settings file, or loaded
from the PNML file. The initial and final markings are loaded in the same manner.

3 www.pnml.org/

157

u I < | 1 Array Editor o X
outputFolder xes-out = || A |l save
petrinetSetup
placet
petrinetfile examples\petrineticompl: | | @ | | Load model | | draw
placet
inhibitorArclds arc1? =
resetArcids arci2 arci3 place2
Marking places
isUsingInitialMarkingFromPnmi
initialPlacelds place; place; place2; places
finalPlacelds place7; place7; place6 -
number0fLogs 5
5
numberOffraces 10 i
Save image to file | Update || sow arc ids
maxNumberOfSteps 6
isRemovingEmptyTraces v
isRemovingUnfinishedTraces v/
isUsingNoise
isUsingStaticPriorities
isUsingTime
print | Save settings | New settings | Load settings
Loaded settings: examples\petrinet\complex1\settingsjson
Generate logs!
Fig. 4. Tool GUI
{
"petrinetSetup" : {
"petrinetFile" : “examples\\petrinet\\complexl\\complexl.pmﬂl",
"marking” : {"isUsingInitialMarkingFromPoml": false...},
"inhibitorArclds" : ["arcl7"],
"resethrelds" : ["arcl2", "arcl3"]
s
"outputFelder" : "xes-out",
"isRemovingEmptyTraces" : true,
"jisRemovingUnfinishedTraces" : true,
"numberOfLogs" : 5,
"numberOfTraces" : 10,
"maxNumberOfSteps" : &,
"isUsingNoise" : false,
"noiseDescription" : |
"noiseLevel"” : 5,
"isSkippingTransitions™ : true,
"isUsingExternalTransitions" : true,
"isUsingInternalTransitions" : true,
"internalTransitionIds"” : [],
"existingNoiseEvents" : [{
"activity" : "NoiseEwvent",
"executionTimeSeconds" : 600,
"maxTimeDeviationSeconds" : 120
; |
1.
"isUsingStaticPriorities" : false,
"staticPriorities" : {"maxPriority": 1...},
"isUsingTime" : false,
"timeDescription" : {"generationStart": "2019-04-07T22:27:06.991z"...}
}

Fig. 5. Generation settings in JSSON

After that we create an instance of special class GenerationHelper, which encapsulates the main
code for choosing transitions, looking for enabled transitions, handling noise and artificial log events

158

Pertsukhov P.A., Mitsyuk A.A. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 151-162

if it is needed. There are different helpers for simple generation, generation with priorities, and
generation with time.

Also, we convert each transition to a special loggable transition-related class which is used during
generation. They contain methods of event recording to a trace. Such a class also consumes tokens
from input places and produces tokens to output places. Methods to check if a transition is enabled
are also here.

4.2 Preparing for generation

A singleton class is used to record the event log. We setup this logging class. It uses the OpenXES*
library with the help of which we can write XES log files. The XES format is common for the field
of process mining [1]. OpenXES library creates a separate file for each log. A fragment of the
example output in XES file is shown in fig. 6. This example contains two traces with names “Trace
4 and “Trace 5”. These names should be unique.

The first trace is of the three events: “B”, “D”, and “D”. Note that XES is XML-based and is easy-
to-read for a machine or a human.

Then we use a Generator class to launch the main generation method (see Algorithm 1), passing a
generationHelper to this class.

<trace>
<string key="concept:name" wvalue="Trace 4"/>
<event>
<string key="concept:name" wvalue="B"/>
</event>
<event>
<string key="concept:name" walue="D"/>
</event>
<event>
<string key="concept:name" wvalue="D"/>
</event>
</trace>
<trace>
<string key="concept:name" wvalue="Trace 5"/>
<event>
<string key="concept:name" walue="D"/>
</event>
<event>
<string key="concept:name" wvalue="B"/>
</event>
<event>
<string key="concept:name" walue="D"/>
</event>
</trace>

Fig. 6. Fragment of XES file

4.3 Tool Usage

Let us test our tool on the model from the fig. 7.

The initial marking consists of four tokens (shown as black dots): one token lies in place2, one is in
place5, and two tokens are in placel. Our goal is to reach the final marking (shown as green dots):
two tokens in place7, and one token in place6.

Transition C is enabled only when place place6 is empty. C consumes 2 tokens from place4 and
produces a token to place7. Transition B removes all tokens in places placel and place2. When this
transition fires, it consumes 4 tokens from place4 and produces a token to place7. Thus, B can not

4 http://www.xes-standard.org/openxes/start

159

Tleprryxos IT.A., Murok A.A. Cimymsaast ceteit [Tetpn ¢ HETMOMTOPHBIMM tyramu 1 tyramu cOpoca. Tpyowr UCIT PAH, Tom 31, Bem. 4, 2019 T, crp. 151-162

fire before A. At each step either X or Y is enabled, so these transitions may produce a trace of any
length. We set-up our tool to remove unfinished traces and limited max number of steps to 10. The
result of the generation is shown in fig. 8.

place2

placel

place4 C place7

place6 X
BENO e

placeS

® - initial marking, e - final marking

Fig. 7. Petri net used for log generation

[AXY.XBYXYCX
[AXY,BCX
[AXBYXYCX
[AXBYCX
XABYXY,XYCX
[A C X B]

XA BYCX

X Y,ACBX

[A.B CX]

[A C B X]
[A,BXYCX
[ABXYXYCX]
XY, AXBYXYCX]
XA BYCX

[AB CX]

Fig. 8. Resulting traces

Let us look at some trace, for example: <A4,X,B,Y,C,X >. First fired transition was A, and it
produced 6 tokens to place4. Then X fired. It consumed a token from place5 and produced one to
place6. C cannot fire in this marking. Thus, B fires. 4 of 6 tokens was consumed from place4, and
one token produced to place7. Then Y fired and «opened» C. C has been fired just after Y was fired,
when a token has been removed from place6. B and C were fired once each, and produced 2 tokens
in total to place7. placel and place2 were cleared by B. The last event was X, which placed a token
to place6. At the end of this run all tokens reside in the final marking.

160

Pertsukhov P.A., Mitsyuk A.A. Simulating Petri Nets with Inhibitor and Reset Arcs. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 4, 2019, pp. 151-162

5. Conclusion

In this paper, we have presented the algorithm to simulate a process model in the form of weighted
labelled Petri net with inhibitor and reset arcs. This algorithm can be applied to generate event logs
from the event log. Proposed algorithm continues the previous works on Petri net simulation with
the purpose of generating artificial event logs. The prototype implementation is based on Gena tool®.
We have plans for future work. Firstly, we plan to comprehensively evaluate the proposed algorithm
on artificial and real-life process models. For now, we just tested it on sample models to check
algorithm validity. Secondly, we also plan to improve the prototype implementation and make it
stable and usable. Thirdly, Gena is able to simulate timed process models, models with resources,
data, add noise to an event log [8], [17]. Recently, an extension for Gena to simulate the multi-agent
system has been proposed [18]. We plan to merge these extensions and the algorithm presented in
this paper. Then, it will be possible to simulate WIR Petri nets with time/resources, and data.

References

[1]. Wil M.P. van der Aalst. Process mining: Discovery, Conformance and Enhancement of Business
Processes. Springer, 2011, 352 p.

[2]. J. Carmona, B.F. van Dongen, A. Solti, and M. Weidlich. Conformance Checking — Relating Processes
and Models. Springer, 2018, 270 p.

[3]. M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer, 2007, 408 p.

[4]. Wil M.P. van der Aalst. Process mining and simulation: a match made in heaven! In Proc. of the 50th
Computer Simulation Conference, 2018, Article No. 4.

[5]. A. Burattin and A. Sperduti. PLG: A framework for the generation of business process models and their
execution logs. Lecture Notes in Business Information Processing, vol. 66, 2010, pp. 214-219.

[6]. A. Burattin. PLG2: multiperspective process randomization with online and offline simulations. In Proc.
of the BPM Demo Track 2016, CEUR Workshop Proceedings, vol. 1789, 2016.

[7]. T. Jouck and B. Depaire. Ptandloggenerator: A generator for artificial event data. In Proc. of the BPM
Demo Track 2016, CEUR Workshop Proceedings, vol. 1789, 2016.

[8]. A.A. Mitsyuk, I.S. Shugurov, A.A. Kalenkova, and W.M.P. van der Aalst. Generating event logs for high-
level process models. Simulation Modelling Practice and Theory, vol. 74, 2017, pp. 1-16.

[9]. W. Reisig, Understanding Petri Nets — Modeling Techniques, Analysis Methods, Case Studies. Springer,
2013, 260 p.

[10]. K. Jensen and L. M. Kristensen. Coloured Petri Nets — Modelling and Validation of Concurrent Systems.
Springer, 2009, 384 p.

[11]. LA. Lomazova. Nested Petri Nets: Multi-level and Recursive Systems. Fundamenta Informaticae, vol. 47,
no. 3-4, 2001, pp. 283-293.

[12]. R. Valk. Object Petri nets: Using the nets-within-nets paradigm. Lecture Notes in Computer Science, vol.
3098, 2003, pp. 819-848.

[13]. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems. MIT
Press, 2002, 384 p.

[14]. C. Lakos and S. Christensen. A general systematic approach to arc extensions for coloured Petri nets.
Lecture Notes in Computer Science, vol. 815, 1994, pp. 338-357.

[15]. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Computation, vol. 123, no. 1,
1995, pp. 1-16.

[16]. H. C. M. Kleijn and M. Koutny. Process semantics of p/t-nets with inhibitor arcs. Lecture Notes in
Computer Science, vol. 1825, 2000, pp. 261-281.

[17]. S. Shugurov and A. A. Mitsyuk. Generation of a Set of Event Logs with Noise. In Proc. of the 8th
Spring/Summer Young Researchers Colloquium on Software Engineering (SYRCoSE 2014), 2014, pp.
88-95.

[18]. Nesterov R.A., Mitsyuk A.A., Lomazova L. A. Simulating Behavior of Multi-Agent Systems with Acyclic
Interactions of Agents. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302. DOL:
10.15514/ISPRAS-2018-30(3)-20.

5 https://pais.hse.ru/research/projects/gena
161

Tlepiryxos ILA., Murtrok A.A. Cumymsigist ceteit [letpu ¢ MHTHOMTOPHBIMU TyraMu 1 gyramu copoca. Tpyost UCIT PAH, Tom 31, Bim. 4, 2019 1., c1p. 151-162

MHdopmauus o6 aBTopax / Information about authors

IMaBen AumnekceeBnu IIEPLIYXOB - cryaent OakamaBpumara HUY BIID B MockBe Mo
CHEIUATBHOCTH IIPOrpaMMHasi HEKeHepusi, moctynui B 2016 roay. Craxép B madoparopuu [IOUC.
OCHOBHBIC HCCIIEHOBAaTENbCKHE HWHTEpech: ceTd IleTpu, process mining, KOMIMJIATOPEL,
CHHTAKCHYECKHH aHaIIH3.

Pavel Alexeevitch PERTSUKHOV is a bachelor student at the HSE Moscow, on the program
'Software Engineering', starting from 2016, PAIS Lab intern. His research interests include Petri
nets, process mining, compilation, syntax analysis.

Anexceil Amnekcannposuu MMUIIOK — Hayusbelii coTpygHUK J1a0OpaTOpUM HPOIECCHO-
OpUEHTHPOBAHHBIX MH()OPMAMOHHBIX CUCTeM (pakynpTeTa KOMIbIOTepHbIX Hayk HUY BIID B
MockBe. Anekceid 3aKOHYMI MOCKOBCKHI TOCYIapCTBEHHBIH WHCTUTYT JIIEKTPOHUKH U
matematukd B 2009 romy. Paboran B kadecTBe pa3paboTuhKa MPOrpaMMHOIO OOCCIICUCHHS U
cucteMHOro umkeHnepa. B 2013 roay Anekceit ctai cOTpyIHHKOM BHOBb CO3aHHOU JJaOOpaTOpUU
IMTOUC nox coBmecTHBIM pyKoBoacTBOM mpod. M.A.JlomaszoBoit u npod. B.M.II. Ban aep Aaicra.
B 2019 romy Anekced mosydmi cTeleHb KaHAWMATa KOMIBIOTEPHBIX Hayk or HUY BIID.
OCHOBHBIC HCCJIEIOBATEIbCKHE HHTEpECh: ceTh Ilerpu, process mining, MopeNIMpOBaHUE
MPOLIECCOB, APXUTEKTypa HH(OPMAIMOHHBIX CUCTEM H IPOrPaMMHOI0 00eCiedeHusl.

Alexey Alexandrovitch MITSYUK is a research fellow at the Laboratory of Process-Aware
Information Systems of the Computer Science Faculty, HSE Moscow. Alexey graduated from
Moscow State Institute of Electronics and Mathematics in 2009. He worked as a software developer
and system engineer in industry. In 2013 Alexey has joined newly created PAIS Lab under the co-
supervision of prof, L A. Lomazova and prof. W.M.P. van der Aalst. Alexey received his Ph.D. in
Computer Science from Higher School of Economics in 2019. His research interests include Petri
nets, process mining, process modeling, architecture of information systems and software.

162

