
Труды ИСП РАН, том 35, вып. 2, 2023 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023

143

DOI: 10.15514/ISPRAS-2023-35(2)-10

Approach to end-to-end testing of the application
for managing the configuration of enterprise virtual

infrastructure

E.V. Geraskin, ORCID: 0009-0007-2599-1460 <GeraskinEvgeniy@mail.ru>
N.V. Voinov, ORCID: 0000-0002-0140-1178 <voinov@ics2.ecd.spbstu.ru>

Peter the Great St.Petersburg Polytechnic University,
29, Polytechnicheskaya, St.Petersburg, 195251, Russia

Abstract. The article is devoted to end-to-end testing of the application for managing the configuration of
enterprise virtual infrastructure. The main idea is to develop a software framework to create and perform end-
to-end tests written in Python. The approach involves a comprehensive evaluation of the system from the user
interface to the database. The testing process is performed in a continuous integration environment, which
enables the team to test the system continually as new code is added. The testing process also includes the use
of automated tests written in Python. The automated tests allow for faster and more reliable testing and enable
the team to test the system across multiple platforms and configurations. The approach also includes the use of
virtual environments to simulate the production environment. This enables the team to identify potential issues
that may arise in the production environment and to test the system's performance under various conditions.

Keywords: ent-to-end testing; enterprise virtual infrastructure; configuration; software framework; Python.

For citation: Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the
configuration of enterprise virtual infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp.
143-156. DOI: 10.15514/ISPRAS-2023-35(2)-10

Разработка подхода к сквозному тестированию приложения для
управления конфигурацией виртуальной инфраструктуры

предприятия

Е.В. Гераскин, ORCID: 0009-0007-2599-1460 <GeraskinEvgeniy@mail.ru>
Н.В. Воинов, ORCID: 0000-0002-0140-1178 <voinov@ics2.ecd.spbstu.ru>

Санкт-Петербургский политехнический университет Петра Великого,
Россия, 195251, Санкт-Петербург, ул. Политехническая, д. 29

Аннотация. Статья посвящена сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Основная идея заключается в разработке программной
среды для создания и выполнения сквозных тестов, написанных на Python. Подход включает
всестороннюю оценку системы от пользовательского интерфейса до базы данных. Процесс
тестирования выполняется в среде непрерывной интеграции, что позволяет команде постоянно
тестировать систему по мере добавления нового кода. Процесс тестирования также включает
использование автоматизированных тестов, написанных на Python. Автоматизированные тесты
обеспечивают более быстрое и надежное тестирование и позволяют команде тестировать систему на
нескольких платформах и в разных конфигурациях. Подход также включает использование
виртуальных сред для имитации производственной среды. Это позволяет команде выявлять
потенциальные проблемы, которые могут возникнуть в производственной среде, и тестировать
производительность системы в различных условиях.

Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 143-156

144

Ключевые слова: сквозное тестирование; виртуальная инфраструктура предприятия; конфигурация;
программная основа; Python

Для цитирования: Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию
приложения для управления конфигурацией виртуальной инфраструктуры предприятия. Труды ИСП
РАН, том 35, вып. 2, 2023 г., стр. 143-156. DOI: 10.15514/ISPRAS–2023–35(2)–10

1. Introduction
End-to-end testing [1] is a software testing technique that involves evaluating a system from end to
end, covering every component and process, from the user interface to the database. The goal of
end-to-end testing is to verify the system's functionality, performance, reliability, and security,
among other aspects. End-to-end testing ensures that all parts of the system work together as
expected and that there are no inconsistencies or errors that might affect the system's performance.
One of the main advantages of end-to-end testing is that it can identify potential issues that might
not be detected by other testing techniques, such as unit testing or integration testing. For example,
if there is a problem with the interaction between different components of the system, it may not be
evident in isolation, but it could have significant consequences for the system's performance as a
whole. End-to-end testing can identify such issues and help developers address them before the
system is deployed.
Another benefit of end-to-end testing is that it can help reduce the time and effort required to identify
and rectify errors. By testing the system as a whole, issues can be located and resolved earlier in the
development process, before they become more challenging and expensive to fix. This, in turn, can
help reduce the overall cost of development and improve the time-to-market for the product [2].
Moreover, conducting end-to-end testing can contribute to enhancing the product's quality and
customer satisfaction. By verifying that the system functions as intended and performs well, end-to-
end testing can help ensure that users have a positive experience when using the product. This
improves customer loyalty and generates positive feedback.
End-to-end testing is a critical software testing technique that is essential for verifying the
functionality, performance, reliability, and security of a system. By testing the system from end to
end, potential issues can be identified and addressed early in the development process, leading to a
higher-quality product that performs well and satisfies customers' needs. That is why it is necessary
to use the end-to-end testing paradigm as an axiom, and build the testing process around it.
Similar to the software development process, end-to-end testing also follows a specific
methodology. In this case, methodology refers to the principles, ideas, methods, and concepts that
engineers employ while working on a project. There are currently several diverse approaches to end-
to-end testing, each with its own starting points, duration of execution, and methods used at each
stage. Choosing the right approach can be a challenging task, and it requires an understanding of the
unique features and requirements of the system being tested.
This article focuses on the approach to end-to-end testing of a specialized software used for
managing the configuration of enterprise virtual infrastructure. Later in text «application» is used to
define this software. Detailed architecture of this application is described in section 2.
The approach involves a comprehensive evaluation of the system from the user interface to the
database. The testing process is performed in a continuous integration environment, which enables
the team to test the system continually as new code is added. The testing process also includes the
use of automated tests written in Python. The automated tests allow for faster and more reliable
testing and enable the team to test the system across multiple platforms and configurations.
The approach also includes the use of virtual environments to simulate the production environment.
This enables the team to identify potential issues that may arise in the production environment and
to test the system's performance under various conditions.

Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Труды ИСП РАН, том 35, вып. 2, 2023 г., стр. 143-156

145

2. Features of the application under test and end-to-end testing
Application for managing the configuration of enterprise virtual infrastructure consists of three main
components (Fig.1):
 Client-side: a part of the application that handles user requests and interacts with Ansible

playbooks via API;
 Configuration management scripts module: Ansible playbooks for setting and applying specified

configuration to target system;
 Target infrastructure system (server, virtual machine or PC with already installed operation

system, etc.)
There are many approaches to end-to-end testing and some suggest that testing should be done in
three stages with each component tested separately. Often, different engineers with different
knowledge, skills, and competencies conduct each stage of testing. However, this approach has some
disadvantages. Firstly, it can take a considerable amount of time to complete all three stages of
testing, especially if the gap between each stage is long. This can lead to delays in the development
process and make it more challenging to fix any issues that are identified.

Fig. 1. The main components of the application under test

Another issue with this approach is that it can be challenging to identify the root cause of any issues
that arise. If an error is identified in one component, it can be challenging to determine whether the
issue is specific to that component or if it is related to another part of the system. This can lead to a
significant amount of time spent on troubleshooting and can further delay the development process.
Moreover, the three-stage approach to end-to-end testing may not capture all the possible
interactions and dependencies between the different components of the system. This can result in
issues being missed, which can lead to unexpected behavior when the system is deployed in a
production environment. Additionally, this approach can be costly since it requires a significant
amount of time and resources to execute and maintain.

Fig. 2. Approach to end-to-end testing of the considered application

Therefore, for end-to-end testing of the considered application an approach is needed that will not
break the system into separate components but will consider the entire system as a whole (Fig.2).

Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 143-156

146

Thus, minimizing the time complexity during the process of end-to-end testing is crucial. Moreover,
the entire testing process can be carried out and monitored by a single engineer.
End-to-end testing may encounter several issues, including complexity, time-consuming nature,
difficulty in reproducing errors, inconsistency, debugging challenges, high cost, and so on.
Complexity is one of the primary challenges of end-to-end testing, especially when testing complex
systems. Testing multiple components of such systems makes the testing process challenging. Tests
may also consume a lot of time, making frequent testing difficult [3].
Another problem that may arise during end-to-end testing is difficulty in reproducing errors. End-
to-end testing can make it difficult to identify the cause of an error when it arises due to testing the
entire system. Furthermore, end-to-end tests can be inconsistent, meaning they may fail repeatedly
for various reasons. This can be caused by different factors such as network issues, browser version
mismatch, and race conditions.
Debugging end-to-end tests can indeed be a challenging task, especially when a test fails. Identifying
the root cause of the failure can be problematic, as the issue may be located in any of the various
components of the system. This can make it difficult to isolate the source of the problem and resolve
it. As a result, engineers may spend a significant amount of time diagnosing and fixing issues, which
can increase the overall development time.
Moreover, end-to-end testing requires a considerable amount of hardware and software resources.
This is because the testing process involves the comprehensive evaluation of the system from the
user interface to the database, which requires a substantial amount of computational power.
Maintaining end-to-end tests can also be challenging over time, especially when the system being
tested evolves and changes. In complex systems, end-to-end testing may not cover all possible
scenarios, leading to limited coverage. Tests may also provide insufficient feedback to developers
as it may be challenging to pinpoint the exact location of a problem in the system.
Finally, end-to-end testing can be too costly. Conducting end-to-end tests may require the use of a
large number of hardware and software resources as well as the need for an adequate number of
qualified specialists to write and maintain tests.
Overall, end-to-end testing has its advantages and disadvantages, and its effectiveness depends on
several factors, including system complexity, the number of resources available for testing, and the
experience of the engineering team. Understanding these issues can help developers and testers
create a more effective testing strategy to ensure system quality and reliability.
When developing software and tests, one of the generally accepted methodologies is used:
 TDD (Test Driven Development) [4] is a software development methodology that is based on

repeating short development cycles: initially, a test is written that covers the desired change, then
program code is written that implements the desired behavior of the system and allows the written
test to pass. Then, the written code is refactored with constant checking of the passing of tests.

 TDD (Type Driven Development) [5] is based on types. In this case, data types and type signatures
serve as a specification for the program. Types also serve as a form of documentation that is
guaranteed to be updated.

 BDD (Behavior Driven Development) [6] involves describing user scenarios in natural language
by testers or analysts.

 DDD (Domain Driven Design) [7] is a set of rules that allow for making the right design decisions.
This approach significantly speeds up the process of designing software in an unfamiliar domain.

 FDD (Features Driven Development) [8] attempts to combine the most recognized software
development methodologies in the industry, based on important functionality (properties) of the
developed software for the customer. The main goal of this methodology is to systematically
develop real, working software within the set deadlines.

It was decided to use BDD, as it is the only approach that involves obtaining natural language test
documentation as output. Additionally, this methodology allows a single engineer (tester) to
independently carry out the entire end-to-end testing cycle, from writing test scenarios to creating a

Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Труды ИСП РАН, том 35, вып. 2, 2023 г., стр. 143-156

147

report on the results of testing. This solves one of the main problems - involving multiple engineers
with different sets of knowledge and competencies in testing.
When conducting end-to-end testing, specialized tools are usually used for this purpose. Of course,
there are more or less universal tools, but it should be understood that the intricacies of end-to-end
testing may differ even among software systems operating in the same domain. Therefore, for each
system, its own approach and tool for end-to-end testing are usually developed. Moreover,
implementation may vary depending on the skills or preferences of engineers, as well as the specifics
of the software. This can be a full-fledged application with a graphical interface, a console program,
a framework that is embedded in the project with automated tests, and so on.
For example, within the scope of end-to-end testing of V2X (Vehicle-to-Everything) systems [3], a
distributed application is used, each node of which emulates a real microcontroller. Moreover, it is
necessary to emulate not only the "hardware", but also a specialized message exchange protocol.
V2X is a technology that provides communication between vehicles and other objects, such as
infrastructure and pedestrians. It should be understood that the criticality of an error in such a system
can cost someone's life. Therefore, in such systems, testing tools must be as close as possible to the
real environment: using a minimum of mock objects, distributed, well supported and updated. All
these factors make end-to-end testing tools very heavy for development, support, and financing, so
such tools should only be used when there is an urgent need. Otherwise, resources spent on
development and support will be wasted.
Speaking of universal cross-functional testing tools, the most well-known ones are Jaeger and Zipkin
[9]. These two very similar tools provide functionality for fairly detailed identification of system
failures in a software system. These tools have many advantages: they are easy to set up thanks to
detailed documentation and ease of use, they are suitable for almost any software system, provide a
wide range of functionality and a graphical interface, which means that there is no need to spend
time developing and supporting this functionality.
However, the universality of these tools also has its drawbacks. Jaeger and Zipkin do not provide
functionality for executing test scenarios, i.e., testing will still have to be done manually, but the
tools will help to identify the location of the error more easily and quickly. The results of the tools'
work may be difficult for non-technical people (such as management) to understand, so all reports
will also have to be written manually.
Also, both tools are quite “heavy”, which may require additional hardware resources for deployment.
Jaeger and Zipkin do not support all programming languages, so if the system is written in a specific
language, it may simply not be possible to configure the tools.
Finally, these two tools may pose certain risks in terms of information security: if access is
configured incorrectly or improperly, various sensitive information may leak. Thus, Jaeger and
Zipkin are not without drawbacks, but are still good tools for cross-functional testing, but only as
additional control systems. Nevertheless, the functionality does not allow for complete control of
cross-functional testing only through these tools.
One of the most popular cross-functional testing tools today is a software tool in the form of a
framework for a programming language on which engineers write automated tests. This approach is
relevant not only for applications that perform mobile computing [10], but also for other systems
from completely different subject areas. The idea of implementing such frameworks is as follows:
for a test framework of some programming language (e.g., the Pytest framework for the Python
language), a wrapper is written that allows desired actions to be performed with the system under
test. Creating a cross-functional testing software framework can offer several advantages:
 Flexible customization. With a custom testing platform, one can adapt their testing to the specific

needs of their project, providing greater flexibility and control over the testing process.
 Reusability. A custom framework can be reused in multiple projects or teams, saving time and

effort in the long run.

Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 143-156

148

 Integration opportunities. Integrating a custom testing platform with other tools and systems can
help simplify and automate the testing process.

 Cost savings. Creating a custom framework may be cheaper than purchasing, learning, and
implementing a commercial testing tool or framework.

 Learning opportunities. Creating a custom framework provides opportunities for one's team to
learn as they develop and refine their skills in software development and testing.

Fig. 3. System-level design

3. The proposed approach
To arrive at the picture shown in Fig.2, an approach to end-to-end testing was developed that can be
applied by a single engineer and minimizes downtime between testing of system components.
Behavior Driven Development (BDD) [11] methodology is used for end-to-end testing of both
individual components and the system as a whole. BDD is a development approach based on
behavior description, where an engineer writes descriptions such as "As a user, when I click the Start
button, the menu should be displayed as shown in the picture." Classic development with tests
follows. BDD involves engineers describing user scenarios in natural language. Thus, the output
will include not only end-to-end test scenarios and their results, but also natural language
descriptions that can be used for documentation or reporting. Moreover, a person who is not familiar
with the technical implementation of the system can understand the results because all results will
be described in natural language.
One of the main advantages of BDD is that this approach focuses on business needs rather than
technical implementation details. Tests are written in natural language that everyone can understand,
which improves communication and minimizes possible misunderstandings. This approach allows
customers and developers to determine what needs to be tested without additional costs for
translating technical documentation.
BDD also leads to improved test coverage of the product because this methodology aims to cover
all possible application usage scenarios. Based on these tests, potential issues can be easily identified
before they become real problems for users.
Furthermore, BDD enables the creation of tests that are easier to maintain in the future. This is
because changes in the application require changes in all related tests, so the easier the tests are to
maintain and modify, the easier it is to make changes to the application itself.
However, the BDD methodology has its own limitations. BDD can be quite difficult to understand,
especially for new developers and testers. It may require them to learn new terminology and testing
approaches.
BDD may require additional effort during development to create functional requirements that can
be used to write tests. This can take additional time.

Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Труды ИСП РАН, том 35, вып. 2, 2023 г., стр. 143-156

149

Additionally, BDD may require workers to put in significant effort to understand the behavior of the
application. This may require a lot of training, practice, and time, which may be unrealistic for some
companies at present.
Integration with tools can be challenging, especially with multiple tools at once, to run BDD tests.
This may require additional costs to maintain tool settings up-to-date.
However, the main problem with applying BDD in end-to-end testing of the application for
managing the configuration of enterprise virtual infrastructure is the presence of components such
as configuration management script modules and target infrastructure systems.
In the classical application of BDD, it is suggested to cover end-to-end tests only for the client-side,
which is written in commonly used programming languages such as Java, C#, Python, etc. However,
it is unclear how to deal with configuration management tools (Ansible/Puppet) and even more
unclear how to apply BDD to end-to-end testing of server or virtual machine states. To address this
issue, a software tool was developed, which is a Python-based framework that allows the application
of BDD to specific components for this approach.

4. Implementation
IT companies develop specialized frameworks (including for testing) to address various tasks within
their systems, taking into account the specifics of the product and providing the necessary tools for
interacting with it. Since automated testing of the client-side is implemented using the Python
framework Pytest, a software tool was developed that is a framework for the Python and allows the
application of BDD to specific components for this approach.
Functional requirements for the developed software:
 The software shall prepare the infrastructure on which end-to-end testing will be performed (in

this case, creating virtual machines), and after completion, release resources (i.e., delete virtual
machines).

 The software shall provide the ability to test the client-side of the application.
 The software shall provide the ability to test configuration management scripts.
 The software shall provide the ability to test the state of the target system after applying the

necessary configuration.
The software shall generate a summary report on the results of end-to-end testing in natural
language.
The system-level design [12] of the developed software can be described by the diagram shown in
Fig. 3.
The developed framework is essentially a versatile black box that can take in automated tests,
Ansible playbooks, Molecule scripts, and a map of expectations as inputs, all written in Python.
These inputs are then used to execute the end-to-end tests on the system under test (SUT). Testing
in this case means, for example, checking the correctness of the scenario for installing security
updates on a group of virtual machines.
One of the key advantages of this framework is that it is easily customizable and extensible, allowing
users to tailor it to their specific testing requirements. Users can add their own test cases and test
scripts, as well as customize the test environment and configuration to suit their needs.
Upon execution, the framework automatically generates a test report in Allure, a flexible and open-
source platform for test reporting. The report includes comprehensive descriptions of the test cases
in natural language, making it easy for users to understand and interpret the test results.
The software solution developed for this approach is written in Python, with a specially configured
Jenkins job as the user interface. The Pytest and Molecule tools are responsible for end-to-end testing
of the entire system, on which a module for applying the BDD approach to end-to-end testing of the
application for managing the configuration of enterprise virtual infrastructure was created.

Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 143-156

150

The developed software solution is highly flexible and versatile framework for Python, which can
be easily integrated into any project with automated end-to-end testing requirements. It provides a
seamless and well-structured interface for writing and executing end-to-end tests, using a variety of
inputs such as autotests, Ansible playbooks, Molecule scripts, and a map of expectations.
To help visualize the inner workings of the end-to-end testing system, a UML sequence diagram has
been developed, which captures the interrelation of all components involved in the testing process
(Fig. 4). This diagram illustrates the flow of events that take place during the execution of the end-
to-end tests, starting with the initialization of the test environment and ending with the generation
of the test report.

Fig. 4. UML sequence diagram

The diagram shows how each component of the system interacts with the others, providing a clear
and concise overview of the entire testing process. It highlights the critical role played by the
developed framework in managing the end-to-end testing process, as well as the importance of other
components such as the Ansible playbooks and Molecule scripts in setting up the test environment
and ensuring the correct behavior of the system under test.

Fig. 5. High-level design of the developed software

The primary modules of the application for managing the configuration of enterprise virtual
infrastructure are highlighted in gray, while the modules of the developed software solution are
highlighted in orange. Jenkins provides the user interface through which the engineer configures and
launches the end-to-end testing process. Subsequently, the Python framework executes the test
scenarios sequentially for each module: the client-side (using Pytest), Ansible scripts (using
Molecule), and the target system (checking its initial and final states). The results are aggregated
into a report; which Allure generates in natural language. The final report is published in Jenkins,

Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Труды ИСП РАН, том 35, вып. 2, 2023 г., стр. 143-156

151

where reports for each of the end-to-end testing process runs are stored. The interrelation of all
components of the final end-to-end testing system can be described by a UML sequence diagram.
The architecture is shown in Fig. 5.
The framework comprises three primary components:
 A module for preparing test data and deploying the test infrastructure, which includes fixtures –

objects that can be considered a set of conditions required for the test to run. For example, fixtures
are often created to generate data before the test starts and return it for use in the test or before
the test. This module also handles the preparation of the test infrastructure (creating virtual
machines) and the preparation of test data such as IP addresses of virtual machines, login
credentials, operating system names, etc.

 The module that implements methods for accessing the necessary services of the company during
testing. This module creates conditions for testing that replicate the production environment: to
correctly use virtual machines created in the previous module, they shall be properly registered
with third-party services developed by other teams. Additionally, this module is responsible for
verifying the correctness of the end-to-end testing process with respect to other systems within
the company (answering the question “Did our system break another team's system?”).

 The module for configuring testing tools and reporting. This module implements the configuration
of the main testing tools: Pytest for the client-side, Molecule for configuration management, and
shell scripts for checking the state of virtual machines. It also generates a summary report of the
test results in natural language and loads it into Jenkins for visualization.

The Jenkins job plays a crucial role in implementing the user interface for starting the end-to-end
testing process and visualizing the results, as shown in Fig. 6. It serves as a platform for managing
the entire testing process, from the initial setup and configuration of the testing environment to the
execution of tests and the generation of reports.

Fig. 6. Jenkins job

Through the Jenkins interface, users can initiate the testing process and monitor its progress in real-
time, enabling them to quickly identify and address any issues that may arise. Additionally, Jenkins
can be configured to automatically trigger tests based on predefined conditions or events, further
streamlining the testing process and reducing the likelihood of errors or oversights.

Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 143-156

152

The visualization of results in the Jenkins interface provides a clear and concise overview of the
testing process and its outcomes. Users can easily interpret the results and identify any areas of
concern, allowing them to take prompt corrective action and ensure the software meets the necessary
quality standards.
Through the Jenkins functionality, it is possible to configure the parameters of end-to-end testing:
determine the number of virtual machines, select desired operating systems, configure the system
under test, etc.
A summary format displays the last few runs of end-to-end testing, whether they were successful or
not, and if not - at what stage an error occurred. Additionally, it is possible to evaluate a graph of
the number of successful, skipped, and unsuccessful test scenarios.

Fig. 7. Test report

The final generated test report can be also accessed through the Jenkins job interface and consists of
a set of test scenarios with various input data described in formal language steps, expected results,
and the success of executing a particular scenario (Fig. 7).

5. Results
An end-to-end testing approach for the application for managing the configuration of enterprise
virtual infrastructure was developed, and a Python framework with a Jenkins user interface and
natural language test report generation in Allure was created to implement and apply this approach.
The metric chosen to evaluate the usefulness of the new cross-functional testing approach was the
time required to execute a single test run on operating system update functionality: checking correct
credentials uploading, correct operating system update results and correct deletion of temperory files
after update. Ten experiments were conducted using the developed framework, and ten experiments
were conducted using the old approach (with step-by-step testing of each module). It should be noted
that downtime between stages in the old approach was not included in the metric, i.e., only the time
of the testing process was taken into account.

Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Труды ИСП РАН, том 35, вып. 2, 2023 г., стр. 143-156

153

Fig. 8. Results of the first experiment

Initially, an infrastructure consisting of one virtual machine was used. On average, using the
developed framework requires 10–11 seconds per test run, while the old approach requires 30 to 45
seconds (Fig. 8).

Fig. 9. Results of the second experiment

Next, the size of the infrastructure was increased to ten virtual machines, and the same experiment
was conducted. The difference was more significant. The time required for a single test run using
the developed framework remained at 10–11 seconds. However, the old approach showed a much
longer execution time for a single test run - from 200 to 250 seconds (Fig. 9).
The results obtained from the evaluation of the new approach to end-to-end testing of the application
for managing the configuration of enterprise virtual infrastructure were statistically significant and
can be explained through the principle of parallel operations. The use of the developed Python
framework and its support for parallelism led to a significant reduction in the time required to
execute a single test run compared to the old approach with step-by-step testing of each module.
The statistical analysis of the experimental results using a t-test showed a significant difference (p <
0.01) between the mean execution times of the old and new approaches. This indicates that the new
approach is superior in terms of efficiency, as it enables parallel operations and thereby reduces the
time required for end-to-end testing of the application for managing the configuration of enterprise
virtual infrastructure.
The principle of parallel operations is widely recognized in computer science and engineering as an
effective means of improving the efficiency of various computing tasks. It involves breaking down
a large task (testing the whole virtual environment) into smaller subtasks (testing each node) and

Geraskin E.V., Voinov N.V. Approach to end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 2, 2023. pp. 143-156

154

executing them concurrently, thereby reducing the overall time required for completion. In the case
of end-to-end testing of the application for managing the configuration of enterprise virtual
infrastructure, the use of parallelism is particularly beneficial as it allows for the testing of multiple
virtual machines simultaneously, resulting in significant time savings.
It is worth noting that with the new approach to end-to-end testing, the entire process is performed
and controlled by a single engineer, as opposed to the old approach, which required the involvement
of three different engineers with varying levels of knowledge and expertise. This allows for a more
streamlined and efficient testing process, as the same engineer is responsible for each stage of the
testing process and can quickly identify and resolve issues as they arise.
During the testing process, three engineers are, of course, more efficient than one, since they can
confer with each other and find the root cause of the problem faster. But in this case, these are
engineers from different teams who perform rather isolated parts of a single process. Therefore, if
one of the engineers had a problem, the others could not help him much, because they did not know
the subject area of the other teams well. Therefore, the new framework gives the best result in such
a situation.
Additionally, the developed software framework for end-to-end testing generates a detailed report
in natural language, which provides a comprehensive overview of the testing process and the results
obtained. This report is automatically generated by the software, eliminating the need for manual
report writing, which was necessary with the old approach. This saves considerable time and effort,
allowing engineers to focus on other critical aspects of the development process.
Furthermore, the use of natural language in the generated report makes it easy for stakeholders to
understand the testing results and make informed decisions regarding the software development.
This can be particularly useful for managers and other non-technical team members who may not
have the technical expertise required to interpret traditional testing reports.

6. Conclusion

The proposed approach to end-to-end testing for the application for managing the configuration of
enterprise virtual infrastructure offers several advantages over the traditional approach, including a
more streamlined testing process and the automatic generation of a comprehensive report in natural
language. These benefits can help engineers save time and effort while improving the quality of the
software and ensuring that it meets the required standards and specifications.

References
[1] Tsai W., Bai X. et al. End-to-end integration testing design, In Proc. of the 25th Annual International

Computer Software and Applications Conference (COMPSAC), 2001, pp. 166-171.
[2] Soni M. End to End Automation on Cloud with Build Pipeline: The Case for DevOps in Insurance

Industry, Continuous Integration, Continuous Testing, and Continuous Delivery. In Proc. of the IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM), 2015, pp. 85-89.

[3] Wang J., Shao Y. et al. A Survey of Vehicle to Everything (V2X) Testing. Sensors, vol. 19, issue 2, 2019,
article no. 334, 20 p..

[4] Beck K. Test Driven Development By Example. Addison-Wesley Professional, 2002, 240 p.
[5] Brady E. Type-Driven Development with Idris. Manning Publications, 2017, 480 p.
[6] Smart J.F. BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle. Manning

Publications, 2014, 384 p..
[7] Wesenberg H., Olmheim J. Agile Enterprise Software Development Using Domain-Driven Design. In

Proc. of the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and
Applications , 2007, pp. 983–993.

[8] Chowdhury A.F., Huda M.N. Comparison between Adaptive Software Development and Feature Driven
Development. In Proc. of the International Conference on Computer Science and Network Technology,
2011, pp. 363-367.

Гераскин Е.В., Воинов Н.В. Разработка подхода к сквозному тестированию приложения для управления конфигурацией
виртуальной инфраструктуры предприятия. Труды ИСП РАН, том 35, вып. 2, 2023 г., стр. 143-156

155

[9] Martinez Hernandez C., Martinez A. et al. Comparison of End-to-End Testing Tools for Microservices: A
Case Study. Advances in Intelligent Systems and Computing, vol. 1330, 2021, pp. 407-416.

[10] Satoh I. A Testing Framework for Mobile Computing Software. IEEE Transactions on Software
Engineering, vol. 29, issue 12, 2003, pp. 1112-1121.

[11] Mohanan R. What Is BDD (Behavior Driven Development)? Meaning, Process, and Examples. Available
at: https://www.spiceworks.com/tech/devops/articles/what-is-bdd/, accessed: May 10, 2023.

[12] Sobek D.K. II. System-Level Design: International Journal of. Engineering Education, vol. 22, issue 3, ,
2006, pp. 533-539.

[13] Allure Jenkins Plugin. Available at: https://plugins.jenkins.io/allure-jenkins-plugin/, accessed Mar. 28,
2023.

Information about authors / Информация об авторах
Евгений Вадимович ГЕРАСЬКИН – студент 2 курса магистратуры. Научные интересы:
тестирование ПО, backend-разработка, разработка информационных систем, автоматизация
тестирования.

Evgeny Vadimovich GERASKIN is a 2nd year student of the Master's program. Research interests:
software testing, backend development, information systems development, test automation.

Никита Владимирович ВОИНОВ – кандидат технических наук, доцент. Научные интересы:
модели, методы и алгоритмы проектирования и анализа программ и программных систем, их
эквивалентных преобразований, верификации и тестирования.

Nikita Vladimirovich VOINOV – Candidate of Technical Sciences, Associate Professor. Scientific
interests: models, methods and algorithms for designing and analyzing programs and software
systems, their equivalent transformations, verification and testing.

