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Abstract. The Residue Number System is a widely used non-positional number system. Residue Number 
System can be effectively used in applications and systems with a predominant proportion of addition, 
subtraction and multiplication operations, due to the parallel execution of operations and the absence of inter-
bit carries. The reverse conversion of a number from Residue Number System to positional notation requires 
the use of special algorithms. The main focus of this article lies in introducing the new conversion method, 
which incorporates Chinese Remainder Theorem, Akushsky Core Function and rank of number. The step-by-
step procedure of the conversion process is detailed, accompanied by numerical examples. The proof of the 
relationship between the ranks of positional characteristics using the Chinese Remainder Theorem is presented. 
Through careful analysis and comparison with existing transformation methods, it is concluded that the 
presented approach takes on average 8 % less time than the Approximate Method. 

Keywords: residue number system; Chinese remainder theorem, approximate method; Akushsky core 
functions; non-modular operations.  

For citation: Lutsenko V.V., Babenko M.G., Khamidov M.M. High speed method of conversion numbers from 
residue number system to positional notation. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 4, 2024. pp. 117-
132. DOI: 10.15514/ISPRAS-2024-36(4)-9. 

Acknowledgements. The research was supported by the Russian Science Foundation Grant No. 19-71-10033, 
https://rscf.ru/en/project/19-71-10033/. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lutsenko V.V., Babenko M.G., Khamidov M.M. High speed method of conversion numbers from residue number system to positional 
notation. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 4, 2024. pp. 117-132. 

118 

Высокоскоростной метод перевода чисел из системы 
остаточных классов в позиционную систему счисления 

1 В.В. Луценко, ORCID: 0000-0003-4648-8286 <vvlutcenko@ncfu.ru> 
1 М.Г. Бабенко, ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru> 

2 М.М. Хамидов, ORCID: 0009-0002-9884-5716 <samsungmunis@gmail.com> 
1 Северо-Кавказский федеральный университет, 
355017, Россия, г. Ставрополь, ул. Пушкина, д. 1. 

2 Самаркандский государственный университет имени Шарофа Рашидова, 
703004, Узбекистан, г. Самарканд, Университетский бульвар, д. 15. 

Аннотация. Система остаточных классов – это распространенная непозиционная система счисления. 
Система остаточных классов может эффективно использоваться в приложениях с преобладающей 
долей операций сложения, вычитания и умножения благодаря параллельному выполнению операций и 
отсутствию битовых сдвигов. Обратное преобразование числа из системы остаточных классов в 
позиционную систему счисления требует использования специальных алгоритмов. Основное внимание 
в данной статье уделено представлению нового метода преобразования, который использует 
Китайскую теорему об остатках, функцию ядра Акушского и ранг числа. Подробно описан алгоритм 
преобразования, представлены числовые примеры. Представлено доказательство связи между рангами 
позиционных характеристик с помощью Китайской теоремы об остатках. В результате тщательного 
анализа и сравнения с существующими методами преобразования сделан вывод, что представленный 
подход занимает в среднем на 8 % меньше времени, чем приближенный метод. 

Ключевые слова: система остаточных классов; Китайская теорема об остатках, приближенный метод; 
функция ядра Акушского; немодулярные операции. 
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1. Introduction 
In today's world, where computational systems play an increasingly significant role in various fields 
of activity, the question of efficiently converting numbers between different numeral systems 
becomes particularly relevant. One such system is the Residue Number System (RNS), which 
provides unique capabilities for handling large numbers through parallel computations [1]. RNS is 
applied in the following areas: blockchain [2], homomorphic encryption [3], digital signal and image 
processing [4], neural networks [5]. 
However, there are cases where it is necessary to translate numbers from RNS to positional notation, 
which is commonly used in most computational devices [6]. Efficient methods for converting 
numbers from RNS to positional notation must be developed. 
In [7] the authors introduced a technique based on the Chinese Remainder Theorem (CRT) and 
employed optimized modular arithmetic operations to achieve faster conversions. The algorithm was 
evaluated on a variety of RNS moduli sets and demonstrated significant improvements in conversion 
time compared to previously known methods. 
Chervyakov et al. [8] focused on developing a hybrid conversion method that combines RNS and 
binary arithmetic to achieve more efficient conversions. The proposed method utilized operand 
scanning techniques to identify patterns in the RNS representation and optimize the conversion 
process. The authors demonstrated that their hybrid approach outperforms conventional conversion 
methods in terms of both speed and hardware resource utilization. 



Луценко В.В., Бабенко М.Г., Хамидов М.М. Высокоскоростной метод перевода чисел из системы остаточных классов в 
позиционную систему счисления. Труды ИСП РАН, 2024, том 36, вып. 4, с. 117-132. 

119 

The article [9] focuses on hardware acceleration for RNS-to-decimal conversion using Field-
Programmable Gate Arrays (FPGAs). The authors designed a specialized hardware accelerator 
capable of handling large-scale RNS numbers and converting them efficiently to decimal format. 
The proposed FPGA-based implementation demonstrated substantial speedup compared to 
software-based conversion methods, making it suitable for real-time applications. 
In [10-11] proposed energy efficient conversion algorithms which minimizes the energy 
consumption in the process of number conversion and number sign determination. By optimizing 
the use of resources and considering the power constraints of the base equipment, the proposed 
methods provide significant energy savings compared to conventional conversion methods.  
Advances in this area have paved the way for improved performance, reduced power consumption 
and increased fault tolerance, making RNS a more attractive option in various domains [12]. 
However, further research is still warranted to explore new techniques and optimizations that can 
further enhance the conversion process and maximize the potential of RNS in modern computing 
systems. 
This paper researches methods of converting numbers from RNS to the positional notation. The 
main methods are the CRT based method, the Interval Method, the Mixed Radix Conversion (MRC) 
method, the Diagonal Function (DF) method and the Approximate Method. 
The purpose of this paper is to present a high-speed method for converting numbers from RNS to 
positional notation based on the use of Akushsky core function and number rank. 
The paper is organized as follows. In Section 2, we give a brief overview of the Residue Number 
System. In Section 3, various techniques for converting numbers from RNS to positional notation 
are described. Section 4 deals with performance evaluation. Finally, Section 5 concludes with some 
final thoughts and considerations, including possible directions for future research. 

2. Residue Number System 
In RNS, numbers are expressed as sets of residues obtained by performing modular arithmetic 
operations on those numbers with respect to a set of coprime moduli. The use of coprime moduli 
ensures that there is no overlap or interference between the residues, allowing for parallel 
computation of operations on individual residues [12]. 
The numerical representation in RNS utilizes the Chinese Remainder Theorem. Let ሼ𝑝ଵ,𝑝ଶ, … ,𝑝௡ሽ 
be mutually prime moduli, and 𝑃 = 𝑝ଵ ∙ 𝑝ଶ ∙ … ∙ 𝑝௡ be their product. For each number 𝑋, there exists 
a set of remainders 𝑥ଵ, 𝑥ଶ, … , 𝑥௡, where 0 ≤ 𝑥௜ < 𝑝௜, and these remainders form the RNS 
representation of 𝑋. Put differently, 𝑋 exhibits congruence with the residues 𝑥௜ modulo 𝑝௜. 
Mathematically, this can be expressed as: 𝑥௜ ≡ 𝑋ሺ𝑚𝑜𝑑 𝑝௜ሻ. ሺ1ሻ 
Thus, the number 𝑋 is written in the RNS in the following form: 𝑋 = ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ, ሺ2ሻ 
The computations for the reductions 𝑥௜ can be derived through the application of the following 
equation: 𝑥௜  = 𝑋 − ඄𝑋𝑝௜ඈ ∙ 𝑝௜ , ሺ3ሻ 
To perform operations on numbers in RNS, such as addition and multiplication, operations are 
carried out independently on the remainders of each modulo. For example, calculations in RNS are 
performed according to equation: 𝑋 ∗ 𝑌 = ሺ𝑥ଵ ∗ 𝑦ଵ, 𝑥ଶ ∗ 𝑦ଶ, … , 𝑥௡ ∗ 𝑦௡ሻ. 
Here, the symbol ∗ represents arithmetic operations, encompassing addition (+), subtraction (−), or 
multiplication (∙). Note that each modulo within the RNS is coprime with every other modulo, 
satisfying the condition: ൫𝑝௜ ,𝑝௝൯ = 1, where 𝑖 ≠ 𝑗. 
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3. Methods for Conversion Numbers from RNS to Positional Notation 

3.1 Chinese Remainder Theorem 
If the number 𝑋 is given as residues ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ from division by moduli ሼ𝑝ଵ,𝑝ଶ, … , 𝑝௡ሽ, the 
number 𝑋 can be obtained from the equation based on the CRT [9]: 𝑋 = อ෍𝑃௜ ∙ 𝑥௜ ∙ |𝑃௜ି ଵ|௣೔௡

௜ୀଵ อ௉ = ෍𝑃௜ ∙ 𝑥௜ ∙ |𝑃௜ି ଵ|௣೔௡
௜ୀଵ − 𝑟ሺ𝑋ሻ ∙ 𝑃, ሺ4ሻ 

where 𝑃 is the dynamic range, 𝑃௜ = ௉௣೔, |𝑃௜ି ଵ|௣೔ is the multiplicative inversion of 𝑃௜ modulo 𝑝௜, and 
the operator |𝑋|௣೔ denotes the remainder of division 𝑋 by 𝑝௜, that is 𝑋 𝑚𝑜𝑑 𝑝௜ and 𝑟ሺ𝑋ሻ is the rank 
of the number indicating how many times the range value must be subtracted from the resulting 
number to bring it back into the range. Let us consider the process of number reconstruction as an 
example. 
Example 1. Given a system of bases 𝑝ଵ = 2,𝑝ଶ = 3,𝑝ଷ = 5, 𝑝ସ = 7,𝑝ହ = 11 the volume of the 
dynamic range 𝑃 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 = 2310. Convert the number 𝑋 = ሺ1, 2, 1, 4, 7ሻ to a positional 
system. 
For this purpose, find the values of 𝑃௜: 𝑃ଵ = 𝑃𝑝ଵ = 1155,𝑃ଶ = 𝑃𝑝ଶ = 770,𝑃ଷ = 𝑃𝑝ଷ = 462, 𝑃ସ = 𝑃𝑝ସ = 330,𝑃ହ = 𝑃𝑝ହ = 320. 
Subsequently, our focus turns to the computation of multiplicative inversion, a process entailing the 
determination of 𝛼 such that 𝛼 ∙ 𝑃௜ ≡ 1ሺ𝑚𝑜𝑑 𝑝௜ሻ. Thus: |𝑃ଵି ଵ|௣భ = 1, |𝑃ଶି ଵ|௣మ = 2, |𝑃ଷି ଵ|௣య = 3, |𝑃ସି ଵ|௣ర = 1, |𝑃ହି ଵ|௣ఱ = 1. 
With these values, we can calculate the value of the number 𝑋, according to the (4): 𝑋 = |8411|ଶଷଵ଴ = 1481. 
3.2 Approximate Method Based on CRT 
In [10, 13] a fractional, approximate representation of numbers based on CRT is proposed. Let us 
divide (4) by 𝑃 and obtain 𝑋𝑃 = อ෍𝑥௜ ∙ |𝑃௜ି ଵ|௣೔𝑝௜௡

௜ୀଵ อଵ   =   อ෍𝑥௜௡
௜ୀଵ   ∙  𝑘௜อଵ . ሺ5ሻ 

where 𝑘௜  =   ห௉೔షభห೛೔௣೔  constants of the chosen system, and the (5) gives a result within the interval ሾ0, 1ሻ. In this context, the process of determining the remainder with a larger modulo is replaced by 
simply discarding the integer part, a simple operation to implement. To get the exact value, the 
fractional part is multiplied by 𝑃. Consider a similar example. 
Example 2. Given a system of bases 𝑝ଵ = 2,𝑝ଶ = 3,𝑝ଷ = 5, 𝑝ସ = 7,𝑝ହ = 11 and the number 𝑋 =ሺ1, 2, 1, 4, 7ሻ. Find the constants  𝑘௜: 𝑘ଵ = ଵଶ ,  𝑘ଶ = ଶଷ ,  𝑘ଷ = ଷହ ,𝑘ସ = ଵ଻ ,  𝑘ହ = ଵଵଵ. 
Then by (5) it is easy to find: 𝑋𝑃 =   ฬ1  ∙ 12 + 2 ∙ 23 + 1 ∙ 35 + 4 ∙ 17 + 7 ∙ 111ฬଵ = ฬ1 52105ฬଵ = 52105, 
Hence 
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𝑋 = 52105 ∙ 2310 = 1481. 
Obviously, these calculations are simpler than in the CRT-based method, but in hardware 
calculations the fractional coefficients  𝑘௜ can rarely be represented as finite fractions, so there is a 
question of rounding accuracy. To perform approximate calculations the fractional coefficients  𝑘௜ 
are multiplied by 2ே, where 𝑁 signifies the count of binary digits located beyond the decimal point, 
which provides the required level of calculation accuracy, each resulting number is rounded up to 
the next integer and then all calculations are performed modulo 2ே. 

3.3 Mixed Radix Conversion Method 
The Mixed Radix Conversion technique involves systematically translating a numerical 
representation from RNS to Weighted Number System (WNS) through a sequential process 
[14].This method involves subtracting moduli and multiplying by the multiplicative inversion of a 
modulo. In WNS the translated number has the following form: 𝑋 = 𝑑ଵ + 𝑑ଶ𝑝ଵ + 𝑑ଷ𝑝ଵ𝑝ଶ + ⋯+ 𝑑௡𝑝ଵ𝑝ଶ …𝑝௡ିଵ, ሺ6ሻ 
where 0 ≤ 𝑑ଵ ≤ ሺ𝑝௜ାଵ − 1ሻ. The parameters 𝑑௜ are known as WNS digits. 
The WNS digits can be obtained from the ratios: 𝑑ଵ = 𝑋 − 𝑋ଵ ∙ 𝑝ଵ,𝑋ଵ = ඄𝑋𝑝ଵඈ ,𝑑ଶ = 𝑋ଵ − 𝑋ଶ ∙ 𝑝ଶ,𝑋ଶ = ඄𝑋ଵ𝑝ଶඈ ,⋮𝑑௡ = 𝑋௡ିଵ − 𝑋௡ ∙ 𝑝௡,𝑋௡ = ඄𝑋௡ିଵ𝑝௡ ඈ .

ሺ7ሻ 
The conversion carried out according to the algorithm (7) contains 2ሺ𝑛 − 1ሻ only residual arithmetic 
operations of subtraction and division without remainder, where is the number of moduli of the 
system. Some modification of the considered algorithm can be proposed in the sense that the division 
operation is replaced by the multiplication operation. For this purpose we pre-calculate constants 𝜏௞௝ that satisfy the condition 𝜏௞௝𝑝௞ ≡ 1 ൫𝑚𝑜𝑑 𝑝௝൯, ሺ1 ≤ 𝑘 < 𝑗 ≤ 𝑛ሻ ሺ8ሻ 
It is noteworthy to highlight that the constants 𝜏௞௝ are entirely dictated by the selected system of 
bases, rendering them computable beforehand and amenable to storage in a designated table. 
If the constants 𝜏௞௝ are calculated, the calculation of the digits 𝑑௜ WNS by the algorithm (6) can be 
rewritten in the form: 𝑑ଵ ≡ 𝑥ଵ ሺ𝑚𝑜𝑑 𝑝ଵሻ,𝑑ଶ ≡ ሺ𝑥ଶ − 𝑑ଵሻ𝜏ଵଶ ሺ𝑚𝑜𝑑 𝑝ଶሻ,𝑑ଷ ≡ ൫ሺ𝑥ଷ − 𝑑ଵሻ𝜏ଵଷ − 𝑑ଶ൯𝜏ଶଷ ሺ𝑚𝑜𝑑 𝑝ଷሻ⋮𝑑௡ ≡ ሺ… ሺ𝑥௡ − 𝑑ଵሻ𝜏ଵ௡ − ⋯𝑑௡ିଵሻ𝜏௡ିଵ௡ ሺ𝑚𝑜𝑑 𝑝௡ሻ. ሺ9ሻ 
The constants  𝜏௞௝ are multiplication inverses for the numbers 𝑝௞ modulo 𝑝௝ 
Consider the algorithm (9) with an example. 
Example 3. Let a system of bases 𝑝ଵ = 2,𝑝ଶ = 3, 𝑝ଷ = 5,𝑝ସ = 7,𝑝ହ = 11 be given. The volume of 
the dynamic range 𝑃 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 = 2310. Convert the number 𝑋 = ሺ1, 2, 1, 4, 7ሻ to WNS. 
We first find the constants  𝜏௞௝. For convenience, we write the constants 𝜏௞௝ as a matrix 𝑘 × 𝑗: 
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൮0 20 0 3 4 62 5 40 00 0 0 3 90 0 8൲ 

Now run the algorithm (9) and write the results in Tab. 1. 
Table 1. Algorithm of the MRC method. 

Actions 
Moduli 

Digits 𝑝ଵ = 2 𝑝ଶ = 3 𝑝ଷ = 5 𝑝ସ = 7 𝑝ହ = 11 𝑋 − 𝑑ଵ 11 21 11 41 71 𝑑ଵ = 1 ሺ𝑋 − 𝑑ଵሻ𝜏ଵ௝ 0 12 03 34 66  𝑋ଵ − 𝑑ଶ  22 02 52 32 𝑑ଶ = 2 ሺ𝑋ଵ − 𝑑ଶሻ𝜏ଶ௝  0 32 35 14  𝑋ଶ − 𝑑ଷ   11 11 41 𝑑ଷ = 1 ሺ𝑋ଶ − 𝑑ଷሻ𝜏ଷ௝   0 03 39  𝑋ଷ − 𝑑ସ    00 50 𝑑ସ = 1 ሺ𝑋ଷ − 𝑑ସሻ𝜏ସ௝    0 58  𝑋ସ      𝑑ହ = 7 
Thus, 𝑋 = 𝑑ଵ + 𝑑ଶ𝑝ଵ + 𝑑ଷ𝑝ଵ𝑝ଶ + 𝑑ସ𝑝ଵ𝑝ଶ𝑝ଷ + 𝑑ସ𝑝ଵ𝑝ଶ𝑝ଷ + 𝑑ହ𝑝ଵ𝑝ଶ𝑝ଷ𝑝ସ = = 1 + 2 ∙ 2 + 1 ∙ 2 ∙ 3 + 0 ∙ 2 ∙ 3 ∙ 5 + 7 ∙ 2 ∙ 3 ∙ 5 ∙ 7 = 1481. 
3.4 Interval Method 
Sufficiently effective methods of converting numbers from RNS to positional representation is the 
interval method, based on the interval characteristics of numbers. One of these characteristics is the 
interval number [15]. 
Let RNS is given by a system of bases ሼ𝑝ଵ,𝑝ଶ, … ,𝑝௡ሽ, with the volume of the range 𝑃 = ∏ 𝑝௜௡௜ୀଵ . 
Choose a splitting modulo 𝑝௜ and split the given range into intervals by dividing 𝑃 by the modulo 𝑝௜. Then the number of intervals is 𝑚 = 𝑃௜ = ௉௣೔, and the length of an interval is determined by the 
modulo value. As a result, the value of any number 𝑋 given in RNS on the chosen bases can be 
determined by the interval number: 𝑙௑ = ඄𝑋𝑝௜ඈ . ሺ10ሻ 
which contains the number 𝑋 and by digit 𝑥௜ of the number 𝑋 in the RNS modulo 𝑝௜, i.e. 𝑋 = 𝑝௜𝑙௑ + 𝑥௜ . ሺ11ሻ 
Since ሺ𝑝௜ ,𝑃௜ሻ = 1 , by Euler's theorem: 𝑃௜ఝሺ௣೔ሻ ≡ 1 ሺ𝑚𝑜𝑑 𝑝௜ሻ, ሺ12ሻ 
where 𝜑ሺ𝑝௜ሻ is an Euler function. If 𝑝௜ is a prime number, then 𝜑ሺ𝑝௜ሻ = 𝑝௜ − 1. 
Substituting (12) into (4) the number 𝑋 can be written as 
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𝑋 = อ෍𝑃௜ఝሺ௣೔ሻ௡
௜ୀଵ 𝑥௜อ௉ . ሺ13ሻ 

To determine the interval number 𝑙௑, substitute (13) into (10): 𝑙௑ = අ∑ 𝑃௜ఝሺ௣೔ሻ𝑥௜௡௜ୀଵ − 𝑟ሺ𝑋ሻ𝑃𝑝௜ ඉ . ሺ14ሻ 
Since 𝑝௜ is a divisor of the numbers 𝑃௝ఝ൫௣ೕ൯ ሺ𝑖 ≠ 𝑗ሻ,  𝑃௜ఝሺ௣೔ሻ  − 1,  𝑃 then 𝑙௑ = 𝑙௑భ𝑥ଵ + 𝑙௑మ𝑥ଶ + ⋯+ 𝑙௑೙𝑥௡ − 𝑟௑𝑃. ሺ15ሻ 
where 𝑙௑ೕ = ௉ೕകቀ೛ೕቁ௣೔ , ሺ𝑖 ≠ 𝑗ሻ and 𝑙௑ೕ = ௉೔ക൫೛೔൯ିଵ௣೔  are constant coefficients defined by the base system. 

Thus we have, 𝑙௑ = อ෍ห𝑙௑೔𝑥௜ห௉೔ା௡
௜ୀଵ อ௉೔

ା . ሺ16ሻ 
Substituting (16) into (11), we obtain a positional notation of the number 𝑋: 𝑙௑ = ቌอ෍ห𝑙௑೔𝑥௜ห௉೔ା௡

௜ୀଵ อ௉೔
ା ቍ𝑝௜ + 𝑥௜ . ሺ17ሻ 

It may be noted here that it is more appropriate to choose the largest modulo in the system as the 
split modulo. In this case, modular operations are performed with a smaller modulo value. 
We will illustrate this method with an example. 
Example 4. Let a system of bases 𝑝ଵ = 2,𝑝ଶ = 3,𝑝ଷ = 5, 𝑝ସ = 7,𝑝ହ = 11 be given. Convert the 
number 𝑋 = ሺ1, 2, 1, 4, 7ሻ to a positional notation. Let us choose 𝑝ହ = 11 as the splitting modulo, 
then 𝑃ହ  =   ௉௣ఱ   =  210, the interval number 

𝑙௑ = อ෍ห𝑙௑೔𝑥௜หଶଵ଴ାହ
௜ୀଵ อଶଵ଴

ା . 
and the number 𝑋 = 𝑝ହ𝑙௑ + 𝑥ହ. Define 𝑙௑೔. Since 𝜑ሺ𝑝ଵሻ = 2 − 1 = 1,  𝜑ሺ𝑝ଶሻ = 3 − 1 =2,  𝜑ሺ𝑝ଷሻ = 5 − 1 = 4,  𝜑ሺ𝑝ସሻ = 7 − 1  = 6,  𝜑ሺ𝑝ସሻ = 11 − 1 = 10, then 𝑙௑భ =   ฬ115511 ฬଶଵ଴ା = 105,  𝑙௑మ = ቤ770ଶ11 ቤଶଵ଴ା = 140,  𝑙௑య = ቤ462ସ11 ቤଶଵ଴ା = 126, 

𝑙௑ర =   ቤ330଺11 ቤଶଵ଴ା = 30,  𝑙௑ఱ = ቤ210ଵ଴ − 111 ቤଶଵ଴ା = 19. 
Then 𝑙௑ = |764|ଶଵ଴ା = 210. 
Thus, 𝑋 = 134 ∙ 11 + 7 = 1481. 

3.4 Diagonal Function 
There is another way of reconstructing the numbers in the literature [16, 17]. For RNS ൛𝑝ଵ, 𝑝ଶ, …, 𝑝௡ൟ 
define the Sum of Quotients (SQ) parameter as 𝑆𝑄 = 𝑃ଵ + 𝑃ଶ  + ⋯+ 𝑃௡, ሺ18ሻ 
and the constants 𝑘௜ = |− 𝑝௜ି ଵ|ௌொ . ሺ19ሻ 
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The diagonal function for a given number 𝑋 = ሺ𝑥ଵ,𝑥ଶ, … , 𝑥௡ሻ is defined as 𝐷ሺ𝑋ሻ = |𝑥ଵ𝑘ଵ + 𝑥ଶ𝑘ଶ + ⋯+ 𝑥௡𝑘௡|ௌொ. ሺ20ሻ 
If (4) is multiplied by ௌொ௉ , we get the scaled value of 𝑋: 𝑋 ∙ 𝑆𝑄𝑃 = อ෍𝑆𝑄 ∙ 𝑥௜𝑝௜ ∙ |𝑃௜ି ଵ|௣೔௡

௜ୀଵ อௌொ . ሺ21ሻ 
From the definition of 𝑘௜ (19) we can derive 𝛽௜ ∙ 𝑆𝑄 − 𝑘௜𝑝௜ = 1, where 𝛽௜ = |𝑃௜ି ଵ|௣೔, which is 
equivalent to 𝛽௜  =  |𝑃௜ି ଵ|௣೔. Thus, 𝑘௜ = ௌொ௣೔ ∙ |𝑃௜|௣೔ − ଵ௣೔, where ௌொ௣೔ ∙ |𝑃௜ି ଵ|௣೔ = 𝑘௜ + ଵ௣೔. Then 

substituting 𝑘௜ + ଵ௣೔ in (20) instead of 𝑘௜ we get the scaled value of 𝐷ᇱሺ𝑋ሻ. Thus, to obtain the value 

of 𝑋, substitute the calculated values in (21) and multiply by ௉ௌொ. 𝑋 = 𝑆𝑄𝑃 ∙ อ෍𝑥௜ ൬𝑘௜ + 1𝑝௜൰௡
௜ୀଵ อௌொ = 𝑃 ∙ 𝐷ሺ𝑋ሻ + ∑ 𝑥௜ ∙ 𝑃௜௡௜ୀଵ𝑆𝑄 . ሺ22ሻ 

Consider this method with an example. 
Example 5. Similarly, we are given RNS ሼ2,  3,  5,  7,  11ሽ and a number 𝑋 = 1481 = ሺ1, 2, 1, 4, 7ሻ. 
From the previous examples we know 𝑃 = 2310,  𝑃ଵ = 1155,  𝑃ଶ = 770,  𝑃ଷ = 462,  𝑃ସ =330,  𝑃ହ = 210. Then 𝑆𝑄 = 2927 and from (19) 𝑘ଵ = 1463,  𝑘ଶ = 1951,  𝑘ଷ = 1756,  𝑘ସ = 418,  𝑘ହ = 266. Find the diagonal function 𝐷ሺ𝑋ሻ = |10655|ଶଽଶ଻ = 1874, 
From (22) find the required value: 𝑋 = 4334887 2927 = 1481. 
4. The Akushsky Core Function Method Based on the Rank of Number 
We present a fast technique for conversion numerical values from the RNS to positional notation. 
This approach involves using the Akushsky Core Function to find the rank of a number. The 
Akushsky Core Function [18] is defined by the following equation 𝐶ሺ𝑋ሻ = ෍𝑤௜ ඌ𝑋𝑝௜ඐ௡

௜ୀଵ . ሺ23ሻ 
where integers 𝑤௜ are constants determined by the choice of the interpolation point. The numbers 𝑤௜ 
in equation (23) can be arbitrary in a certain sense. It is they that define each particular core function 
and can vary depending on the problem to be solved. An algorithm for determining the optimal 
weights for the Akushsky core function is presented in [19]. 
Core function range value is calculated as 𝐶ሺ𝑃ሻ = 𝐶௉ = ෍𝑤௜𝑃௜௡

௜ୀଵ . ሺ24ሻ 
We define the so-called orthogonal bases 𝐵௜ as 𝐵௜ = 𝑃௜ ⋅ |𝑃௜ି ଵ|௣೔ , 
We also define the coefficients 𝑐௜ as 𝑐௜ = 𝐶ሺ𝐵௜ሻ, 
Rewrite (23) as 
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𝐶ሺ𝑋ሻ = อ෍𝑐௜𝑥௜௡
௜ୀଵ อ஼ು = ෍𝑐௜௡

௜ୀଵ ⋅ 𝑥௜ − 𝑟ሺ𝑋ሻ ⋅ 𝐶௉, ሺ25ሻ 
Then the rank of the Akushsky core function number can be defined as 𝑟ሺ𝑋ሻ = ቞∑ 𝑐௜௡௜ୀଵ ⋅ 𝑥௜𝐶௉ ቟ . ሺ26ሻ 
There are three forms of representation of the CRT, each of them corresponds to a positional 
characteristic of the number represented in RNS. 
The first form was represented in (4), the rank of a number in this representation can be calculated 
as follows 𝑟ሺ𝑋ሻ = ඍ෍ 1𝑝௜௡

௜ୀଵ ⋅ |𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜එ . ሺ27ሻ 
Second form 𝑋 = อ෍𝑃௜௡

௜ୀଵ ⋅ ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔อ௉ = ෍𝑃௜௡
௜ୀଵ ⋅ ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔ − 𝑟ሺ𝑋ሻ ⋅ 𝑃, ሺ28ሻ 

where 𝑟ሺ𝑋ሻ is the normalised rank of the number, which can be calculated as 𝑟ሺ𝑋ሻ = ඍ෍ 1𝑝௜௡
௜ୀଵ ⋅ ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔එ , ሺ29ሻ 

 
The third form is proposed and its rank is represented respectively in (25) and (26). 
Consider the following properties. 
Theorem 1. 𝑟ሺ𝑋ሻ = −𝑋𝑃 + ෍ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔𝑝௜௡

௜ୀଵ . 
Proof: 
According to the definition 𝑟ሺ𝑋ሻ = ቨ෍ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔𝑝௜௡

௜ୀଵ ቩ = ඍ1𝑃෍ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔௡
௜ୀଵ ⋅ 𝑃௜එ . ሺ30ሻ 

Since ቔ௑௉ቕ = ௑௉ − |௑|ು௉ , then 𝑟ሺ𝑋ሻ = 1𝑃෍ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔௡
௜ୀଵ ⋅ 𝑃௜ − 1𝑃 ⋅ อ෍ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔௡

௜ୀଵ ⋅ 𝑃௜อ௉. 
According to the CRT, ቚ∑ ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔௡௜ୀଵ ⋅ 𝑃௜ቚ௉ = 𝑋, consequently, 

𝑟ሺ𝑋ሻ = 1𝑃෍ห|𝑃௜ି ଵ|௣೔ ⋅ 𝑥௜ห௣೔௡
௜ୀଵ ⋅ 𝑃௜ − 𝑋𝑃. 

The theorem is proved. 
Theorem 2. 𝑟ሺ1ሻ = − 1𝑃 + ෍ |𝑃௜ି ଵ|௣೔𝑝௜௡

௜ୀଵ . 
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Proof: 

It follows directly from Theorem 1 that 𝑟ሺ1ሻ = − ଵ௉ + ∑ ห௉೔షభห೛೔௣೔௡௜ୀଵ . 

The theorem is proved. 
Let us examine the correlation between the ranks of positional characteristics. 
Theorem 3. 

Let 𝑝ଵ < 𝑝ଶ < ⋯ < 𝑝௡, the number 𝑋 ோேௌሱ⎯ሮ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ and the weights of the Akushsky core 
function 𝑤ଵ,𝑤ଶ, … ,𝑤௡ satisfying the condition 0 ≤ 𝑋 < 𝑃, then 𝑟ሺ𝑋ሻ = 𝑟ሺ𝑋ሻ + ቞𝐶ሺ𝑋ሻ𝐶௉ ቟ . ሺ31ሻ 
Proof: 
Let us calculate 𝑐௜, we get 𝑐௜ = 𝐶ሺ𝐵௜ሻ = ෍𝑤௝ ቞|𝑃௜ି ଵ|௣೔ ⋅ 𝑃௜𝑝௝ ቟௡

௝ୀଵ . ሺ32ሻ 
Since ∀𝑖 ≠ 𝑗: |𝑃௜ି ଵ|௣೔ ⋅ 𝑃௜ ≡ 0 mod 𝑝௝ and ∀𝑖: |𝑃௜ି ଵ|௣೔ ⋅ 𝑃௜ ≡ 1 mod 𝑝௜, then for 𝑖 ≠ 𝑗: උ|𝑃௜ି ଵ|௣೔ ⋅𝑃௜/𝑝௜ඏ = ห௉೔షభห೛೔⋅௉೔௣೔ , and for 𝑖 = 𝑗: උ|𝑃௜ି ଵ|௣೔ ⋅ 𝑃௜/𝑝௜ඏ = ห௉೔షభห೛೔⋅௉೔ିଵ௣೔ , hence the coefficient 𝑐௜ can be 
represented as follows 𝑐௜ = |𝑃௜ି ଵ|௣೔ ⋅ 𝑃௜ ⋅෍𝑤௝𝑝௝௡

௝ୀଵ − 𝑤௜𝑝௜ . ሺ33ሻ 
Given that ∑ ௪ೕ௣ೕ௡௝ୀଵ = ஼ು௉ , then (33) is transformed to the form 

𝑟ሺ𝑋ሻ = ቞∑ 𝑐௜௡௜ୀଵ ⋅ 𝑥௜𝐶௉ ቟ = ඍ1𝑃 ⋅෍|𝑃௜ି ଵ|௣೔௡
௜ୀଵ ⋅ 𝑃௜ ⋅ 𝑥௜ − 1𝐶௉ ⋅෍𝑥௜ ⋅ 𝑤௜𝑝௜௡

௜ୀଵ එ . ሺ34ሻ 
Substituting (34) into (28), we obtain 

𝑟ሺ𝑋ሻ = ඍ𝑟ሺ𝑋ሻ + 𝑋𝑃 − 1𝐶௉ ⋅෍𝑥௜ ⋅ 𝑤௜𝑝௜௡
௜ୀଵ එ . ሺ35ሻ 

Considering that 

෍𝑥௜ ⋅ 𝑤௜𝑝௜௡
௜ୀଵ = ෍ቀ𝑋 − 𝑝௜ ⋅ ቔ𝑋𝑝௜ቕቁ ⋅ 𝑤௜𝑝௜௡

௜ୀଵ = 𝑋 ⋅෍𝑤௜𝑝௜௡
௜ୀଵ −෍ඌ𝑋𝑝௜ඐ௡

௜ୀଵ ⋅ 𝑤௜ = 𝑋 ⋅ 𝐶௉𝑃 − 𝐶ሺ𝑋ሻ. ሺ36ሻ 
Substituting (36) into (35), we obtain 𝑟ሺ𝑋ሻ = ቞𝑟ሺ𝑋ሻ + 𝐶ሺ𝑋ሻ𝐶௉ ቟ . ሺ37ሻ 
Since as 𝑟ሺ𝑋ሻ ∈ ℤ, and ∀𝑎 ∈ ℝ, 𝑛 ∈ ℤ: ⌊𝑎 + 𝑛⌋ = ⌊𝑎⌋ + 𝑛, then 𝑟ሺ𝑋ሻ = 𝑟ሺ𝑋ሻ + ቞𝐶ሺ𝑋ሻ𝐶௉ ቟. 
Theorem 4. Let 𝑝ଵ < 𝑝ଶ < ⋯ < 𝑝௡, a number 𝑋 ∈ ℤ௉ and an Akushsky core function with with all 
positive weights 𝑤௜ be given, then 𝑟ሺ𝑋ሻ = 𝑟ሺ𝑋ሻ. 
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Proof: 
According to Theorem 3, 𝑟ሺ𝑋ሻ = 𝑟ሺ𝑋ሻ + ቔ஼ሺ௑ሻ஼ು ቕ. Given that the Akushsky core function contains no 

critical cores, ∀𝑋 ∈ ሾ0,𝑃ሻ: 0 ≤ 𝐶ሺ𝑋ሻ < 𝐶௉. Hence ቔ஼ሺ௑ሻ஼ು ቕ = 0, and hence 𝑟ሺ𝑋ሻ = 𝑟ሺ𝑋ሻ. 
The theorem is proved. 
Let us consider our proposed method with an example. 
Example 6. Similarly, we are given RNS 𝑝ଵ = 2,𝑝ଶ = 3,𝑝ଷ = 5, 𝑝ସ = 7,𝑝ହ = 11 and a number 𝑋 = 1481 = ሺ1,2,1,4,7ሻ. 𝑃 = 2310,𝑃ଵ = 1155,𝑃ଶ = 770,𝑃ଷ = 462,𝑃ସ = 330,𝑃ହ = 210. Let us 
use a set of weights 𝑤ଵ = 0,𝑤ଶ = 0,𝑤ଷ = 0,𝑤ସ = 0,𝑤ହ = 1. 
Let us calculate the values of 𝐵௜: 𝐵ଵ = 𝑃ଵ ⋅ |𝑃ଵି ଵ| = 1155,𝐵ଶ = 𝑃ଶ ⋅ |𝑃ଶି ଵ| = 1540,𝐵ଷ = 𝑃ଷ ⋅ |𝑃ଷି ଵ| = 1386, 𝐵ସ = 𝑃ସ ⋅ |𝑃ସି ଵ| = 330,𝐵ହ = 𝑃ହ ⋅ |𝑃ହି ଵ| = 210. 
Then we find the value of the core function range by (24) 𝐶ሺ𝑃ሻ = 𝐶௉ = 210. 
Find the value of coefficients 𝑐௜: 𝑐ଵ = 105, 𝑐ଶ = 140, 𝑐ଷ = 126, 𝑐ସ = 30, 𝑐ହ = 19. 
Then the rank of the number is 𝑟ሺ𝑋ሻ = ඌ105 ⋅ 1 + 140 ⋅ 2 + 126 ⋅ 1 + 30 ⋅ 4 + 19 ⋅ 7210 ඐ = 3. 
Thus, 𝑋 = 1155 ⋅ 1 + 1540 ⋅ 2 + 1386 ⋅ 1 + 330 ⋅ 4 + 210 ⋅ 7 − 3 ⋅ 2310 = 1481. 
5. Performance Evaluation 
The methodology expounded in Section 4 evinces an indisputable advantage over the approaches 
outlined in Section 3. 
To validate the properties of each approach, every algorithm was carefully implemented in Python, 
and a comprehensive performance analysis was executed on a computer equipped with an Intel Core 
i7-7700HQ processor running at 2.80 GHz, 8 GB DDR4 RAM at 1196 MHz, and a 512 GB SSD, 
operating on Windows 10 Home Edition. The study involves two significant phases: 
Stage A examines the performance of three moduli by processing data sets of 50000, 100000, 
200000, 350000, and 500000 using each of the proposed methods. 
In Stage B, we expanded our analysis to cover 19 sets, varying from 3 to 21 moduli, with each 
modulo having an 8-bit dimensionality. We processed a data set of 100000 numbers. 
Throughout the two-stage simulation, we measured the time characteristics of each method with 
attention to detail. To guarantee precision and dependability, we reiterated each measurement one 
hundred times and recorded the average time for evaluation. The findings of these experiments are 
presented concisely in Tables 2 and 3, with time values depicted in seconds. 
Let us conduct a detailed examination of the ensuing tables, delving deeper into the tabulated data 
with a scientific scrutiny. The provided information discusses two stages: Stage A and Stage B, 
focusing on their time characteristics and importance. Stage A is crucial for tracking method 
behavior with increasing data size. Analysis of the data shows a linear growth, which indicates the 
stability of the obtained method using the core function. To enhance understanding, graphs will be 
presented. 
Table 2 provides insights into the time-related features observed during Stage B, underscoring the 
significance of this phase akin to Stage A. In a practical system comprising the control system may 
encompass various configurations, such as two, four, six, or more moduli. Consequently, exploring 
the behavior of methods in relation to the number of moduli within the system becomes imperative. 
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The acquired data not only facilitates an understanding of methodological performance but also 
allows for inferences regarding the stability of the methods. 
Table 2. The result of the study of stage A. 

Amoun
t 

CRT 
Method 

Approximat
e Method 

MRC 
Method 

Interval 
Method 

DF 
Method 

Rank 
Core 

Method 

50000 0.1718475
8 0.15310092 0.1717851

2 
0.8742892

7 
0.2811243

5 
0.1330851

8 

100000 0.3749160
8 0.33490013 1.6195976

3 1.9496377 0.4842178
8 

0.2907209
9 

200000 0.7098841
7 0.57174363 2.6066207

9 
3.3127629

8 
1.1952631

5 
0.4542000

3 

350000 1.1955852
5 1.14163585 4.4932913

8 
5.6563546

7 
1.6890754

7 
0.8794280

9 

500000 1.6884722
7 1.59833269 6.5756256

6 
8.1438398

4 
2.5465111

7 
1.2524046

9 

Table 3. The result of stage B study: dimension of modulo set p[n] where n represents modulo count in the 
ensemble. 

p[n] CRT 
Method 

Approximate 
Method 

MRC 
Method 

Interval 
Method 

DF 
Method 

Rank Core 
Method 

3 0.04886961 0.04188609 0.16806006 0.19650173 0.07034159 0.0388873 
4 0.04986429 0.04387736 0.21841407 0.25733018 0.08476949 0.03990845 
5 0.05085826 0.04582379 0.34164977 0.30221629 0.09973574 0.04392817 
6 0.06984472 0.07378912 0.34810019 0.33629251 0.10273242 0.0588873 
7 0.07682538 0.08676386 0.41370296 0.39549708 0.11066651 0.06990845 
8 0.07836747 0.09275365 0.51267076 0.43252301 0.12862134 0.07392817 
9 0.08676624 0.09826112 0.59272242 0.45488119 0.13066811 0.09067698 

10 0.09473872 0.10372066 0.62236333 0.53865314 0.13461476 0.09264201 
11 0.11070347 0.11968732 0.72314477 0.55988812 0.15419126 0.09558553 
12 0.11466908 0.12268424 0.77975607 0.6223812 0.17807412 0.11655969 
13 0.12469697 0.12665558 0.88087988 0.63008047 0.19151998 0.12052173 
14 0.13267827 0.12510133 1.01868820 0.66010213 0.19850206 0.12311763 
15 0.13463926 0.12766194 1.04511428 0.75057304 0.20049644 0.12251919 
16 0.16458368 0.12769699 1.15422750 0.81782241 0.20647359 0.11738696 
17 0.16755462 0.13862944 1.29933691 0.86782241 0.23633909 0.12436595 
18 0.16951680 0.14361358 1.35722113 0.87273455 0.24734974 0.13237681 
19 0.17810869 0.15760803 1.40875983 0.93827939 0.26701593 0.13935819 
20 0.18051696 0.15960505 1.51713409 0.98166609 0.26928353 0.15541186 
21 0.18350887 0.16758013 1.63444066 1.02923965 0.27526116 0.16631331 

The data from the given table were utilized to create visual representations in the form of figures. In 
addition, a more comprehensive analysis was enabled by extrapolating the acquired values through 
polynomial methods, extending the perspective on the outcomes. 
Upon scrutinizing the acquired outcomes, we can extrapolate the following deductions. Examining 
the graphical representation in Fig. 1, it becomes apparent that conventional methodologies 
demonstrate efficacy particularly when handling a limited quantity of numerical inputs. However, 
starting from the processing of two hundred thousand numbers, MRC method and interval method 
begin to lose. 
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A similar situation is apparent in the graph presented in Fig. 2. On average, our approach displays a 
time efficiency that is roughly 8 % superior to that of the Approximate Method. 
The comparative analysis conducted on methods for translating numbers from RNS to positional 
notation revealed that the method utilizing Akushsky core function and number rank offers certain 
advantages. This is due to the performance of addition and multiplication operations in positional 
notation within the mentioned approach. When performing calculations using MRC, each RNS 
modulo corresponds to a separate channel in which calculations are completed using modular 
arithmetic. However, these calculations are not performed in parallel. When using the interval 
method, it is necessary to complete operations such as addition, multiplication, and degree expansion 
in the positional system. Degree expansion can result in rather large values. One positive aspect of 
the interval method is the ability to process data in a conveyor-like manner. 

6. Conclusion 
In this paper, we have presented a high speed method for converting numbers from RNS to positional 
notation. The proposed method offers a novel approach to achieve rapid and accurate conversions. 
By leveraging the inherent properties of the RNS and optimizing algorithms, our method streamlines 
the conversion process, minimizing computational complexities, and significantly reducing 
conversion times. Experiments demonstrate its superiority over conventional methods, showcasing 
notable improvements in speed. 
While our proposed method represents a significant advancement, there is still room for further 
exploration and optimization. Future studies may investigate hybrid conversion techniques that 
combine the strengths of different algorithms, aiming to achieve even greater efficiency. 
Additionally, evaluating the proposed method's performance in large-scale systems and exploring 
its potential application in emerging technologies will be exciting avenues for future research. 

 
Fig. 1. Findings from stage A analysis. 
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Fig. 2. Findings from stage B analysis. 
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