Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-8

Tuning LLM in secure code generation

123 D S. Shaikhelislamov, ORCID: 0000-0002-9734-7937 <shaykhelislamov.ds@ispras.ru>
4 M.S. Varetsa, ORCID: 0009-0003-8837-5252 <varetsa.m.s@nanosemantics.ai>
34.8. Syomkin, ORCID: 0009-0004-3388-7282 <assemkin@edu.hse.ru>
30.Yu. Rogov, ORCID: 0000-0001-9672-2427 <rogov@airi.net>

! Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

2 Moscow Institute of Physics and Technology,
9, Institutsky lane, Dolgoprudny, Moscow region, 141700, Russia.

3 National Research University, Higher School of Economics,
20, Myasnitskaya ulitsa, Moscow, 101978, Russia.

4 Russian Technological University MIREA,
78, Vernadsky Ave, Moscow, MIREA, Russia.

S AIRI,
32kl, Kutuzovsky ave., Moscow, 121170, Russia.

Abstract. The popularity of using LLM for code generation makes it mandatory to comprehensively verify the
security and reliability of the generated code. To verify the generated code, it is suggested to use the static
analyzer Svace, which checks the executable code using the built-in compiler and checks the code for
weaknesses. The result of the generation is processed using Svace and receives prompts with detected warnings
or errors in the code and requests corrections from LLM after generation. In addition, we fine-tune the Qwen2.5-
Coder model using direct preference optimization (DPO) for error code pairs that include common syntax errors
and runtime errors. This reduced the error rate, including syntactic errors and vulnerabilities, by 20\%. To
evaluate the models, we collected a specialized dataset from open sets for LLM evaluation, focusing on tasks
in which the models generate erroneous code. The experimental results show that fine-tuning the model with a
focus on code quality allows you to generate code that reduces typical errors. In this work, we combine an
iterative prompting mechanism with DPO to improve the security and accuracy of LLM code generation.

Keywords: code generation; large language models; static analysis; analyzer feedback; code security; fine-
tuning.

For citation: Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code
generation. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 111-122. DOI: 10.15514/ISPRAS-2025-
37(5)-8.

111

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

HacTtpoiika a3bikoBon mogenu onsi 6esonacHon reHepauum Kkoga

123 11.C. Hlaiixenucramos, ORCID: 0000-0002-9734-7937 <shaykhelislamov.ds@ispras.ru>
4 M.C. Bapeya, ORCID: 0009-0003-8837-5252 <varetsa.m.s@nanosemantics.ai>
3 A.C. Cémxun, ORCID: 0009-0004-3388-7282 <assemkin@edu.hse.ru>
3 0.10. Pozos, ORCID: 0000-0001-9672-2427 <rogov@airi.net>

' Unemumym cucmemnozo npozpammuposanus um. B.I1. Meannuxosa PAH,
Poccus, 109004, 2. Mockea, yn. A. Comrcenuypina, 0. 25.

2 Mockoeckutl (husuxo-mexnuueckuii uncmumym,
Poccus, 141700 Mockoseckas obracmy, 2. [lonconpyouvlil, Hncmumymckuil nepeynox, 9.

3 HIY Bvicuias wikona 5KOHOMUKL,
Poccus, 101000, 2. Mockea, yr. Macnuykas, o. 20.

4 Poccuiickuii mexnonozuueckui ynusepcumem MHUPIA,
Poccus, 119454 2. Mocksa, npocnekm Bepnaockoeo, oom 78.

5 Uncmumym uckyccmeentozo unmennexma AIRI,
Poccus, 121170, 2. Mockea, Kymyzoeckuii npocnexkm, 0. 32 k. 1.

AnHoTanus. [TonynsapHocTs ucnonb3oBanus LLM juis reHepanuu koja ieaaet 00s13aTebHOM BCECTOPOHHIOK
IPOBEPKY OE30MaCHOCTU M HAJICKHOCTH Cr€HEPUPOBAHHOrO Koja. JlJis MpOBEPKU CrE€HEPHPOBAHHOIO KOJA
Ipe/IaraeTcsl UCIOoNb30BaTh CTATHYECKUM aHAIM3aTop Svace, KOTOpPBIH NPOBepseT HCIOIHSIEMBIH KOJI C
HOMOIIBIO BCTPOGHHOTO KOMIMJIATOpa M IpOBepsieT KOoX Ha Hainuuue AedekToB. Pe3ynbTaT reHepanuu
oOpabaTbIBaeTCs € MOMOILIBIO Svace M IMOJydYaeT 3amnpockl ¢ OOHAPYKEHHBIMH IPEAYNPEKACHUSIMU WIIH
omuOKaMHu B KOZIE U 3anpaiuBaeT ucnpasieHus y LLM nocne renepanuu. Kpome Toro, HacTpausaem Mojielb
Qwen2.5-Coder, ucnons3ys npsmyio ontuMusanuio npeanourenuit (DPO) mias map kogoB OMIO0K, KOTOpBIE
BKJIIOYAIOT PacHpOCTPAHEHHbIE CHHTAKCHYECKHE OIIMOKH U OIMMOKH BO BpeMs BBHINOIHEHHSA. DTO CHH3HIO
4acTOTy OLIMOOK, BKIIIOYAsi CHHTAKCHYECKUE H ysI3BUMbIEe MecTa, Ha 20%. J{is oleHKH MoJielieit Mbl coOpan
CHELMAIM3UPOBaHHBII HA0OP JAHHBIX M3 OTKPBITHIX HAOOPOB 11t oLleHk LLM, cocpesoTouuB BHUMaHUE HA
3a7adax, B KOTOPBIX MOJENH TeHEepHPYIOT OIIHOOYHBIH KoJ. Pe3ynbTaThl SKCIEPHMEHTOB MOKA3bIBAIOT, YTO
TOHKas HACTPOMKa MOJIEIH C aKIIEHTOM Ha KaueCTBO KOJIa 03BOJIIET TeHEPHPOBATh KO, KOTOPBIil yMEHBIIAeT
KOJIMYECTBO THITMYHBIX OIIMOOK. B 3T0i1 padoTe Mbl 00beIMHsIEM MEXaHU3M MTEPAaTHBHBIX 3arnpocoB ¢ DPO
JUTS TIOBBILIEHHST 0€30I1aCHOCTH M TOYHOCTH reHepauuy koxa LLM.

KitioueBsle cj10Ba: reHeparyst Koja; OONIbIINE S3bIKOBBIC MOJICIIN; CTATHICCKUi aHaIN3; 00paTHast CBS3b OT
AHAIN3aTOPOB; 6E30MACHOCTH KOJa; HACTPOITKa MOJICTICH.

Jnst uutupoBanns: laiixenucnamos J1.C., Bapena M.C., Cémxun A.C., Poros O.10. Hactpoiika s13b1K0BOit
Mozenu Jyis Oe3onacHoi renepauun kona. Tpynst UCIT PAH, tom 37, Bbim. 5, 2025 r., crp. 111-122 (Ha
anruiickom s3bike). DOI: 10.15514/ISPRAS-2025-37(5)-8.

1. Introduction

In the modern world, large language models (LLMs) are simplifying the process of writing code and
developing software. According to information from Google's CEO as of October 2024, Al
generates approximately 25% of the code in Google's products [1]. The efficiency with which Al-
based solutions generate code has encouraged users and developers of varying skill levels and
experience to use these tools for quick problem solving in programming or to integrate Al-generated
code into software systems and applications. However, in most cases, the results are not subject to
any quality control, raising concerns about maintaining the security of IT product development
processes. Authors [2] noted that Al-assistant for coding may recommend syntactically incorrect
code including variables, functions, and attributes that are undefined or outside the scope of the
codebase.

Training data may contain outdated functions and libraries, which can lead to vulnerabilities when
used, and may also intentionally include erroneous or unsafe code used to poison large language

112

Mlaiixemncnamon JI.C., Bapena M.C., Cémkun A.C., Poros O.1O. Hacrtpoiika s3b1k0B0i1 Mojienu Juist 6e3omacHoii renepauun xkojaa. 7pyost
HCII PAH, 2025, Tom 37 Boim. 5, ¢. 111-122.

models during the training phase [3]. Recent research [4-5] confirms that approximately 40% of the
code generated by large language models contains vulnerabilities, while user studies indicate that
developers miss at least 10% of the bugs in Al-generated code. Vulnerabilities in software, often
due to common programming errors, remain a primary attack vector for malicious actors, leading to
significant financial losses, data breaches, and reputational risk [6]. The increasing complexity of
software systems and the growing prevalence of cyber security threats have underscored the critical
need for secure coding practices and preparation of secure datasets.

Prompt: def print_time(day hour):
Given two parameters, the first being the day and the second being a measurement of time, return "weekend" if the day is Sat or

Sun, and return weekday if the day is neither. Return "sleeping” if the measurement of time is between 0 and 8, inclusive.
If the time is any other, return either "weekend” or "weekday”.

Qwen2 5-Coder-TB-instruct

wen2.5-Coder-7B-instruc o
2 5-Coder-7B-instruct
Fine-tuned

def print_time(day, hour):

1.
1. def print_time(day,hour): 2. if (day == "Sat" or day == "Sun"):
2. if day == "Sat" or day == "Sun": 3: if (hour >= 0 and hour <= 8):
3. return "weekend" 4. return "sleeping”
4, elif day != "Sat" or day != "Sun": 3. else;
5. return "weekday” 6. return "weekend”
6. if hour >= 0 and hour <= 8: i else:
7. return "sleeping” 8. if (hour >= 0 and hour <= 8):
8. elif hour > 8: 9. return "sleeping”
L} return "weekday" or "weekend" 10. else:
11. return "weekday"
Test cases passed: 0.6 Test cases passed: |

Svace output: Total warnings: 1, Warnings: This statement in the
source code might be unreachable during program execution.
[unreachable] unreachable at solution.py:7
[(day !="Sat")] (day != "Sat") at solution.py:5

Svace_output: Total warnings: 0

Fig. 1. Comparison of the source and modified code generated using LLM
with the warning analysis of the Svace static analyzer.

To address this challenge, we are improving the CodePatchLLM [7], enriching a fine-tuned model
that has finetuned on CodePreference dataset [8]. We emphasize secure coding patterns, enabling
the model to learn not only syntactic and functional correctness but also robust defensive
programming techniques.

Our work yields several findings:

o Novel evaluation dataset: We introduce the MultiEval dataset, designed to bridge the gap
between functional code generation and security-aware programming. This dataset focuses
on coding tasks that historically led to errors in LLM-generated code, providing a robust
benchmark for evaluating model performance.

o Fine-tuned model: We enhance the Qwen2.5-Coder-7B-instruct model using direct
preference optimization (DPO) [9], fine-tuning it on pairs of erroneous and correct code.
This approach reduces both syntactic and runtime errors, resulting in a more reliable model
for code generation.

113

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

2. Related work

LMs for Code Generation. Large LMs designed for general-purpose applications [10], exhibit the
capability to generate functionally correct code [7, 11]. In [12], the authors analyze common
vulnerabilities (for example, injections or buffer overflows) that occur when using LLM, and
propose methods for detecting them using static analysis. This profound understanding of code is
obtained through pretraining on extensive code corpora. More recently, synthetic coding-specific
instructions have been employed to fine-tune pretrained LMs to further enhance their capabilities in
functional correctness [13].

Program Security. An important aspect of programs is their security. Svace is an industry-leading
static analysis engine for detecting security vulnerabilities [14]. It supports mainstream languages
and provides queries for common CWEs. Recently, Svace has been a popular and reliable choice for
evaluating the security of LM-generated code [15]. It is also presented as the main element of the
prompt tuning pipeline with LM in the CodePathLLM framework.

Authors in [16] use expensive manual inspection to curate their training dataset. In contrast, our
work leverages an automated data collection pipeline with SAST, resulting in a diverse dataset with
broader coverage of CWEs and programming languages.

Security of LM-generated Code. Several studies have assessed the security of code generated by
pretrained LMs. These investigations highlight a common finding: all evaluated LMs frequently
produce security vulnerabilities. Addressing this significant security concern is still an early-stage
research topic. The seminal works of SVEN [16] and SafeCoder [13] offer two different approaches:
instruction tuning and fine-tuning the LM. CodePatchLLM [5] combines both approaches. Fine-
tuning LLM to improve code quality is explored in [17], which shows that training on specialized
datasets with examples of secure patterns increases the reliability of generation. In [5], an approach
was proposed to integrate static analyzers such as Svace into the generation process for automatic
code verification at the inference stage.

3. Background and Problem Statement
In this section, we present the necessary background knowledge and outline the problem setting.

3.1 Instruction tuning with Svace

More information about how the instructional process works can be found in early works [7]. The
whole process can be broken down into three key steps: (1) code generation according to a given
description; (2) code verification by the Svace static analyzer; (3) instruction enrichment with
messages from Svace. Automatic correction is performed sequentially with feedback steps until the
stop condition is met. The condition for stopping is either reaching the limit of iteration tmax, or until
all defects in the generated code are fixed. We illustrate this mechanism in Fig. 2. The LMs are fine-
tuned to follow task-specific instructions and align with human preferences — security.

3.2 Fine-tuning LM

We employed a fine-tuning method for LM that generate code, aiming to enhance the quality and
safety of the generated code. For the fine-tuning process, we adopted a reinforcement learning
method through Direct Preference Optimization (DPO). The key idea is to use pairwise comparison
data when a preference is indicated between two model outputs with the same input data. Given a
dataset D = {(x;,y;~, ¥;*)}",_, where x; is the input, y;* is the preferred output, and y;~ is the less
preferred output, DPO aims to maximize the likelihood of the preferred outputs while minimizing
the likelihood of the less preferred ones. The objective function for DPO can be written as [29]:

mt Y o MG)]
T[ref(y+|x) T[ref(y_lx) ’

Lppo(Tg, Trep) = —E(yy+yy ~ D [/ong (ﬁlog

114

Mlaiixemncnamon JI.C., Bapena M.C., Cémkun A.C., Poros O.1O. Hacrtpoiika s3b1k0B0i1 Mojienu Juist 6e3omacHoii renepauun xkojaa. 7pyost
HCII PAH, 2025, Tom 37 Boim. 5, ¢. 111-122.

where:
® 1y is the policy (model) being optimized,
e .., is areference policy (usually the pre-trained model),
® o is the sigmoid function,
e [is a hyperparameter controlling the strength of the preference signal.
Prompt: "Write a function in Python that takes a list of numbers and retumns the sum of all the positive numbers in the list. If the list is

empty, the function should return 0.%

def sum_positive_numbers(numbers): gof. sl::!:_pmmvc_num'lxrﬁlnmnb:n}:

1.
i 2.
e 0t g: takes a list of numbers and returns
= Iteen Lt oluumbcl? ."d e i 4. the sum of all the positive numbers in the list.
4, the sum of all the positive numbers in the list. 5 I the list is empty, the function should
5. 1f the list is empty, the function should Prompt: "Correct previous b- e O Pts '
6. return 0. solution with this feedback: 7. il
7.) ~—# undefined variable “otal' in —» E.
g. for m:;l:“:::na:n:;bm line 10. “‘::I‘.k:l‘:t resulting 9. Fo hiiih A0 Fmhre
10 : . 10. if num > 0:
% 1. total += num
1. else: 12 else:
12. continue 13, e,
13, Teum total 14. retm total

Fig. 2. An example of correcting an error in the code generated using LLM:
initializing a variable for the correct execution of a_function.

This objective encourages the model to assign higher probabilities to preferred outputs y;* relative
to the less preferred outputs y;~, while staying close to the reference policy T,.rto prevent
overfitting. Unlike RLHF, which involves training a reward model and then using reinforcement
learning to optimize the policy, DPO directly optimizes the policy using a simple classification
objective. This makes DPO more computationally efficient and easier to implement.
Our goal is to address the limitation of existing LMs infrequently producing unsafe code, as
highlighted in Fig. 1 (left). While improving security is critical, it is equally important for the
enhanced LMs to achieve high utility, such as generating functionally correct code or solving natural
language tasks. Therefore, our dual objective involves simultaneously improving security and
utility. To achieve this goal, we focus on both methods: fine tuning model and tuning instructions.

4. Experiments

In this section, we outline the experimental setup for our study evaluating the safety and reliability
of code generated by large language models (LLMs). Our experiments are conducted using the
framework BigCodeEval [18]. We aim to determine whether an iterative feedback mechanism
(framework CodePatchLLM [7]) with a fine-tuned model can significantly improve the accuracy
and reliability of code generation. Additionally, we explore the impact of DPO on enhancing the
Qwen2.5-Coder-7B-instruct [19] model performance in generating error-free code. To ensure the
reproducibility of results, the LLM's temperature was set to 0 in all experiments unless otherwise
specified. This parameter configuration minimizes random variation in the model's outputs, thereby
enhancing the reliability of the findings.

4.1 Tasks & Datasets

In the course of our comprehensive study, we performed a detailed comparison of the models in the
context of a Python code generation task. To facilitate this evaluation, our primary benchmark is
HumanEval [20], a popular dataset for assessing the performance of code generation models.
Additionally, we developed and implemented a distinctive dataset MultiEval specifically designed
to evaluate the quality of code generated by large language models (LLMs) using data that are
representative of programming scenarios.

115

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

MultiEval is a set of tasks selected from open-source datasets to evaluate code-generating models.
To construct this dataset, we drew upon several publicly available task sets aimed at evaluating the
quality of generative code models. Among these, we focused on datasets such as APPS-Interview
and APPS-Introductory [21], StudentEval [22], Mercury [23], CoNaLa [24], MBPP [25], DS-1000
[26]. Total 16 534 NL-Code tasks that are popular for LLM skills research. Each of these datasets
provides a diverse array of tasks that encompass a wide range of programming concepts and
practices.

For each task, a solution was generated by a model from the Qwen family: Qwen2.5-Coder-7B,
Qwen2.5-Coder-3B, Qwen2.5-Coder-1.5B (in regular and instruct versions), as well as Qwen2.5-
3B, Qwen2.5-7B and Qwen2.5-14B. The criterion for including the task in the final set was the
presence of errors in the generated solution on the first attempt, determined using the Svace static
analyzer. As aresult, 376 tasks were selected, forming the final data set.

The quality metric is calculated as the ratio of the number of tasks solved without syntactic or logical
errors to the total number of tasks in the dataset. This approach allows an objective assessment of
the model’s ability to generate correct code the first time.

4.2 Metrics

The primary quality metric was the proportion of problems solved without errors, calculated as
follows:

Nerror—free

ErrorFree Rate = * 100%,

total
where Nerror—free 1 the number of error-free solutions, and N¢o is the total number of tasks.

Here, an error-free solution is defined as code that passes all static analysis checks performed by
Svace without any critical issues. For this metric, we determined the percentage of tasks resolved
without errors on the first generation. This metric is reported for both the HumanEval and MultiEval
datasets, providing a comprehensive comparison of model performance across different task
complexities and domains.
When evaluating on the HumanEval dataset, we employed an additional metric: pass@1. This metric
measures the likelihood that a model generates a correct solution on its first attempt. The pass@]1
score was calculated using the unit tests provided in the original dataset, as defined by the following
formula:

pass@1 = Neorreet , 100%,

Ntotal

where N_orec: 1S the number of correct solutions on the first attempt, and N4, 1s the total number
of tasks.
A solution was considered correct upon the first generation if the generated code passed all unit tests
for the given task. This metric is particularly useful for assessing the model's ability to produce
accurate and functional code.

4.3 Evaluation of fine-tuned model

The CodePreference dataset [27] was chosen as the basis for fine tuning, which consists of a set of
tasks accompanied by prompts and code pairs. These code pairs include both correct and incorrect
code, reflecting real scenarios that developers encounter during programming. The selection of the
CodePreference dataset was driven by several factors. Firstly, it provides a variety of scenarios,
ensuring the testing of the model in conditions that closely resemble situations with using LLM for
coding. Furthermore, the richness of error types within the code enables our model to learn not only
to generate syntactically correct code but also to detect and correct potential mistakes.

116

Mlaiixemncnamos JI.C., Bapena M.C., Cémkun A.C., Poros O.1O. Hacrtpoiika s3b1k0B0i1 Mojienu Juis 6e3onacHoii renepauun kojaa. 7pyost
HCII PAH, 2025, Tom 37 BBITL. 5, . 111-122.

We also tested the DPO model fine-tuning method on another dataset in the context of improving
overall code security. To achieve this goal, the CVEFixes dataset [28] was selected. CVEfixes is a
comprehensive vulnerability database that is automatically collected and curated from Common
Vulnerabilities and Exposures (CVE). This dataset contains examples of vulnerable code for various
languages (C, Python, Java, etc.) and is presented in sqlite database format. We combined the strings
from this database and compiled a dataset in jsonl format consisting of 45748 pairs.

The retraining process for the Qwen2.5-Coder-7B-instruct model was carried out in three iterations.
In each iteration, we utilized data from the CodePreference dataset to train the model, embedding
an algorithm that allows it to adapt to the received data based on feedback. Throughout each
iteration, the model improved its capabilities by learning from the errors identified in previous
versions.

Each iteration included the analysis of results, enabling the tracking of progress and adjustments in
the training process. As a result, we obtained a fine-tuned Qwen2.5-Coder-7B-instruct model, which
demonstrated a significant enhancement in code quality, as well as an ability to effectively identify
and correct common errors.

To further analyze the performance of the models, we compared the results of the fine-tuned
Qwen2.5-Coder-7B-instruct model with its original version. The resulting metrics, including the
error-free rate and pass@]1 scores, are presented in Table 1. These results highlight the effectiveness
of fine-tuning in enhancing the model's code generation capabilities.

Table 1. Error-Free Rate (EFR) and pass@1 metric for fine-tuned and original models on HumanEval
benchmark and our dataset MultiEval.

Model HumanEval HumanEval MultiEval
pass@1 EFR EFR
Qwen2.5-Coder-7B 84,8% 96,9% 69,4%
Our 86,6% 98.2% 75,8%

Furthermore, to achieve more representative results, both models were tested in an iterative pipeline,
illustrated in Fig. 2, that involved improving the generated code based on feedback from the static
code analyzer Svace.

Table 2 displays the results for both the fine-tuned and original models on the HumanEval dataset,
including the pass@1 metric after two iterations of code patching, as well as the number of problems
solved without errors in the first generaton, number of problems solved after the first iteration of
code corrections using feedback from the static analyzer and the number of problems that were not
resolved without errors after two iterations of code patching pipeline. On the second iteration, no
improvements were observed for the original Qwen2.5-Coder-7B-instruct model, so it was not
included in the table, although the iteration was actually conducted.

We tested the trained model on the Secure Coding Benchmark [4], on which we got an improvement
in the vulnerable percentage metric, which is responsible for the percentage of test cases evaluated
to be vulnerable across the language.

Table 3 contains the BLEU metric on MultiEval dataset that is used to determine how well generated
code matches one reference code and vulnerable percentage metric for the original model.

117

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

Table 2. Information about the number of correctly generated codes and the pass@1 metric on the
HumanEval benchmark, which consists of 164 tasks, after iterative code patching using Svace for both fine-
tuned and original models.

Model pass@! First attempt | After patch | Didn’t pass
Qwen2.5-Coder-7B 82,9% 159 4 1
Our 87,2% 161 3 0
Table 3. BLEU and Vulnerable Percentage metrics for original Qwen2.5-Coder-7B-Instruct and our model
on MultiEval benchmark.
Original model Our
Language
Vulnerable Vulnerable
BLEU % BLEU o
C 10,9 41,0 10,8 38,3
C++ 10,6 23,9 10,7 22,4
C# 13,9 26,8 13,6 26,0
Java 17,1 53,3 17,4 53,3
JavaScript 10,3 39,4 10,2 39,0
PHP 13,7 36,4 13,4 42,6
Python 8,4 28,2 8,4 28,8
Rust 14,7 422 14,4 41,7

4.4 Evaluation of feedback mechanism

To evaluate the effectiveness of the developed system and its ability to improve the quality and
security of the generated code, a series of experiments with various language models were
conducted. The main evaluation metrics were pass@1 and EFR (Error-Free Rate). The following
models participated in the experiments: CodeLlama-7b-hf, Mistral-7B-Instruct-v0.3, deepseek-
coder-7b-instruct-v1.5, Mamba-Codestral-7B-v0.1, Nxcode-CQ-7B-orpo. The MultiEval dataset
was used for the experiments.

118

Mlaiixemncnamos JI.C., Bapena M.C., Cémkun A.C., Poros O.1O. Hacrtpoiika s3b1k0B0i1 Mojienu Juis 6e3onacHoii renepauun kojaa. 7pyost
HCII PAH, 2025, Tom 37 Bpim. 5, ¢. 111-122.

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.

37, issue 5, 2025. pp. 111-122.

Each model is tested twice: once before applying feedback from the analyzers, and the second time
after 3 iterations of code correction [7]. The original work determined that three iterations were
sufficient, as beyond this point, quality did not improve significantly but generation time increased.
Feedback is generated using two tools: Svace (for detecting syntactic and logical errors) and Bandit
(for finding security vulnerabilities). The experiments were conducted in three modes: Svace only,
Bandit only, and a combination of both. When using Svace alone, the average share of error-free
solutions (EFR) increased by 11.5%, indicating high feedback efficiency while improving code
quality. However, the pass@]1 functional metric showed a slight decrease of about 1%, especially
for weak models such as CodeLlama and Mistral. This is due to the fact that when correcting errors,
the logical integrity of the program is sometimes violated if changes are not made carefully enough.
Stronger models such as deepseek-coder and Nxcode-CQ performed better. They have maintained
or even slightly increased the pass@]1 value, while significantly improving the EFR. This suggests
that high-quality models are better at receiving detailed feedback and are able to maintain the logical
structure of the code while improving it. Results of this experiment are shown in Table 4.

Table 4. Evaluation results before using Svace as a feedback tool and after.

Mo meel | el | ER | E
CodeLlama-7b-hf 29,3% 28,1% 91% 97,6%
deepseek-coder-7b-instruct-v1.5 72% 73,2% 97% 100%
Mistral-7B-Instruct-v0.3 34,8% 33,5% 78,1% 100%
Mamba-Codestral-7B-v0.1 34,2% 37,8% 75% 98,8%
Nxcode-CQ-7B-orpo 78,1% 79,9% 97% 99,4%

has significantly improved the quality and security of output solutions. The greatest effect is
achieved with the combined use of Svace and Bandit, which provides comprehensive code

When using Bandit for security analysis, the results turned out to be less pronounced, since this tool
focuses specifically on finding vulnerabilities, rather than on functional correctness. Nevertheless,
Bandit proved to be useful in combination with Svace.
The average EFR value remained virtually unchanged, remaining at 99.4%, but there was a
noticeable difference in the types of problems detected. Bandit has made it possible to identify and
eliminate risks such as the use of unsafe functions, hard-coded secrets, and potential attack vectors
through user input. Evaluation results across models are shown in Table 5.
The most significant effect was achieved with the simultaneous use of Svace and Bandit as shown
in Table 6. This approach allows you to check the code for both functional correctness and
vulnerabilities. The average EFR value increased by 12%, indicating a comprehensive improvement
in code quality.
The pass@1 metric also showed a slight positive shift of about 1%, especially for models with a
high initial accuracy level. This indicates that higher-quality models are able to effectively use multi-
faceted feedback and maintain the logical integrity of the code while improving it.
The experimental results showed that all the tested models react differently to feedback from the
analyzers. Stronger models such as deepseek-coder and Nxcode-CQ demonstrate good adaptability
to code improvement and are able to maintain the logical integrity of the solution. Less powerful
models such as Codestral and Mistral benefit less from the iterative process and may allow
regressions when making changes. The integration of static analyzers into the code generation cycle
119

verification.
Table 5. Evaluation results before using Bandit as a feedback tool and after.
Model pk?ef;(g?el pffig@f 1 b]golie SE‘;
CodeLlama-7b-hf 29,3% 28,7% 91,4% 96,4%
deepseek-coder-7b-instruct-v1.5 72% 71,3% 97% 99,4%
Mistral-7B-Instruct-v0.3 34,8% 34,2% 78,1% 96,7%
Mamba-Codestral-7B-v0.1 34.2% 34,2% 75% 94,4%
Nxcode-CQ-7B-orpo 78,1% 78,1% 97% 98,4%
Table 6. Evaluation results before using Bandit and Svace as feedback tools and after.
Model plf:;?el pzsfig : bEfliofie ffi:i
CodeLlama-7b-hf 29,3% 27,4% 91,4% 97,6%
deepseek-coder-7b-instruct-v1.5 72% 72,6% 97% 100%
Mistral-7B-Instruct-v0.3 34,8% 32,9% 78,1% 100%
Mamba-Codestral-7B-v0.1 34,2% 37,8% 75% 98,8%
Nxcode-CQ-7B-orpo 78,1% 78,7% 97% 99,4%

5. Conclusions

In this work, we tested an iterative pipeline with a fine-tuned model for improving the safety and
reliability of generated code. Our experiments showed that, on average, only three iterations were
required to eliminate most errors.

Furthermore, we enhanced the Qwen2.5-Coder-7B-instruct model through reinforcement learning
using DPO. By fine-tuning the model on pairs of erroneous and correct code from the
CodePreference dataset, we achieved a notable reduction in any errors.

These findings suggest that combining iterative feedback with advanced reinforcement learning
techniques can significantly enhance the safety and reliability of LLM-generated code. Future work
could explore the integration of additional static, dynamic, and security analysis tools, as well as the
extension of this approach to other programming languages.

120

Mlaiixemncnamos JI.C., Bapena M.C., Cémkun A.C., Poros O.1O. Hacrtpoiika s3b1k0B0i1 Mojienu Juis 6e3onacHoii renepauun kojaa. 7pyost
HCII PAH, 2025, Tom 37 BBITL. 5, . 111-122.

References

[1]. Mckenna G. Over 25pichai says it’s just the start [DnekrponHsiii pecypc] // Fortune. URL:
https://fortune.com/2024/10/30/googles-code-ai-sundar-pichai/ (nara o6pamenus: 01.05.2025).

[2]. Becker B. A. et al. Programming is hard-or at least it used to be: Educational opportunities and challenges
of ai code generation //Proceedings of the 54th ACM Technical Symposium on Computer Science
Education, vol. 1, 2023, pp. 500-506.

[3]. Li J. et al. Poison attack and defense on deep source code processing models //arXiv preprint, 2022.
Available at: arXiv:2210.17029, accessed 09.10.2025.

[4]. Bhatt M. et al. Purple llama cyberseceval: A secure coding benchmark for language models //arXiv
preprint, 2023. Available at: arXiv:2312.04724, accessed 09.10.2025.

[5]. Shaikhelislamov D., Drobyshevskiy M., Belevantsev A. LLM-based Interactive Code Generation:
Empirical Evaluation //2024 Tvannikov Ispras Open Conference (ISPRAS). IEEE, 2024, pp. 1-5.

[6]. Siddiq M. L., Santos J. C. S. SecurityEval dataset: mining vulnerability examples to evaluate machine
learning-based code generation techniques //Proceedings of the 1st International Workshop on Mining
Software Repositories Applications for Privacy and Security, 2022, pp. 29-33.

[7]. Shaikhelislamov D. S., Drobyshevskiy M. D., Belevancev A. A. Ensuring trustworthy code: leveraging a
static analyzer to identify and mitigate defects in generated code //3anucku Hayunbix cemunapos [IOMU,
2024, vol. 540, no. 0, pp. 233-251.

[8]. Liu J. et al. Learning code preference via synthetic evolution //arXiv preprint, 2024. Available at:
arXiv:2410.03837, accessed 09.10.2025.

[9]. Pearce H. et al. Examining zero-shot vulnerability repair with large language models /2023 IEEE
Symposium on Security and Privacy (SP). — IEEE, 2023. — C. 2339-2356.

[10]. Touvron H. et al. Llama 2: Open foundation and fine-tuned chat models //arXiv preprint, 2023. Available
at: arXiv:2307.09288, accessed 09.10.2025.

[11]. Li H. et al. Enhancing static analysis for practical bug detection: An llm-integrated approach //Proceedings
of the ACM on Programming Languages, 2024, vol. 8, no. OOPSLAL, pp. 474-499.

[12]. Kharma M. et al. Security and Quality in LLM-Generated Code: A Multi-Language, Multi-Model
Analysis //arXiv preprint, 2025. Available at: arXiv:2502.01853, accessed 09.10.2025.

[13]. He J. et al. Instruction tuning for secure code generation //arXiv preprint, 2024. Available at:
arXiv:2402.09497, accessed 09.10.2025.

[14]. Belevantsev A. et al. Design and development of Svace static analyzers /2018 Ivannikov Memorial
Workshop (IVMEM), IEEE, 2018, pp. 3-9.

[15]. Tsiazhkorob U. V., Ignatyev V. N. Classification of Static Analyzer Warnings using Machine Learning
Methods //2024 Ivannikov Memorial Workshop (IVMEM), IEEE, 2024, pp. 69-74.

[16]. He J., Vechev M. Large language models for code: Security hardening and adversarial testing
//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, 2023.
pp. 1865-1879.

[17]. Liu M. et al. An empirical study of the code generation of safety-critical software using 1lms //Applied
Sciences, 2024, vol. 14, no. 3, p. 1046.

[18]. Allal L. B. et al. A framework for the evaluation of code generation models [Online] // GitHub. Available
at: https://github.com/bigcode-project/bigcode-evaluation-harness, accessed 09.10.2025.

[19]. Hui B. et al. Qwen2. 5-coder technical report //arXiv preprint, 2024. Available at: 4 arXiv:2409.12186,
accessed 09.10.2025.

[20]. Zheng Q. et al. Codegeex: A pre-trained model for code generation with multilingual benchmarking on
humaneval-x //Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2023, pp. 5673-5684.

[21]. [21]. Hendrycks D. et al. Measuring coding challenge competence with apps //arXiv preprint, 2021.
Available at: arXiv:2105.09938, accessed 09.10.2025.

[22]. Babe H. M. L. et al. Studenteval: A benchmark of student-written prompts for large language models of
code //arXiv preprint, 2023. Available at: arXiv:2306.04556, accessed 09.10.2025.

[23]. DuM. et al. Mercury: A code efficiency benchmark for code large language models //Advances in Neural
Information Processing Systems, 2024, vol. 37, pp. 16601-16622.

[24]. Yin P. et al. Learning to mine aligned code and natural language pairs from stack overflow //Proceedings
of the 15th international conference on mining software repositories, 2018, pp. 476-486.

[25]. Austin J. et al. Program synthesis with large language models //arXiv preprint, 2021. Available at:
arXiv:2108.07732, accessed 09.10.2025.

121

Shaikhelislamov D.S., Varetsa M.S., Syomkin A.S., Rogov O.Yu. Tuning LLM in secure code generation. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 111-122.

[26]. Lai Y. et al. DS-1000: A natural and reliable benchmark for data science code generation //International
Conference on Machine Learning. PMLR, 2023, pp. 18319-18345.

[27]. Liu J. et al. Learning code preference via synthetic evolution //arXiv preprint, 2024. Available at:
arXiv:2410.03837, accessed 09.10.2025.

[28]. Bhandari G., Naseer A., Moonen L. CVEfixes: automated collection of vulnerabilities and their fixes from
open-source software //Proceedings of the 17th International Conference on Predictive Models and Data
Analytics in Software Engineering, 2021, pp. 30-39.

[29]. Rafailov, R., Sharma, A., Mitchell, E., Manning, CD., Ermon, S., Finn, C. Direct preference optimization:
Your language model is secretly a reward model //Advances in neural information processing systems,
2023, vol. 36, pp. 53728-53741.

Unopmayusi 06 aemopax / Information about authors

Jlanun CayraBaToBHY IAUXEJIMCJIAMOB — uccenoBarenb MHCTUTYTa CHCTEMHOTO
MPOrpaMMHpPOBAHUs, CTapUIMi MpernojaBaTelb BpIclield MIKOJBI AKOHOMHKH, AaCHHPaHT
MocKOBCKOTO (DU3MKO-TEXHHUECKOro HHCTUTYTa. Chepa HaydHBIX HHTEPECOB: OOJIBIIHE SI3bIKOBbIC
MO/ICITH, TeHepanus Koja.

Danil Salavatovich SHAIKHELISLAMOYV - researcher at the Institute of System Programming,
senior lecturer at the Higher School of Economics, postgraduate student at the Moscow Institute of
Physics and Technology. His research interests include large language models, code generation.

Mapusi Cepreena BAPELIA — crymentka MUPDA. Cdepa HaydHBIX HHTEpPECOB: OOJNbLINE
SI3BIKOBBIE MO/IENH, TeHEPALNs KOJa.

Maria Sergeevna VARETSA — student MIREA. His research interests include security technologies
and business informatics.

Apcennit Cepreesuna CEMKUH — ctyzen BIIID. Cepa HayuHBIX HHTEPECOB: GOJBITHE S3bIKOBBIE
MOJIENH, IPOrPaMMHUPOBAHHE.

Arseny Sergeevich SYOMKIN — student at HSE University. His research interests include large
language models and software engineering.

Onner OpbeBuu POI'OB — crapinii Hay4YHbIH COTPYIHUK, pyKOBOJHUTEINb TPy «/loBepeHHbIe 1
0e30macHble MHTEIIEKTYaIbHBIE CHCTEMbD», MHCTHTYT HCKYyCCTBEHHOTO WHTEIUIEKTa; HAy4HBIH
COTPYJHUK J1a0OPAaTOPHU BEIMUCIUTENBHOTO HHTEIEeKTa, CKOJNKOBCKHMII WMHCTUTYT HAyKH H
texHonoruii (CronTex).

Oleg Yurievich ROGOV — Senior Researcher, Head of the Trusted and Secure Intelligent Systems
Group, AIRI Institute of Artificial Intelligence; Researcher at the Computational Intelligence
Laboratory, Skolkovo Institute of Science and Technology (Skoltech).

122

